Skip to main content

Advertisement

Log in

Clinical impact of galectin-3 in newly diagnosed t (15;17)(q22;q21)/PML-RARa acute promyelocytic leukemia treated with all-trans retinoic acid and arsenic trioxide-based regimens

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Increased galectin-3 expression has been currently showed to be associated with poor prognosis in some hematological malignancies, such as acute myeloid leukemia, diffuse large B cell lymphoma. However, little is known about the clinical significance of galectin-3 in patients with acute promyelocytic leukemia (APL). We investigated the concentration of serum galectin-3 and characterized the relationship between galectin-3 and outcome in patients with APL. Higher galectin-3 levels were detected in patients with APL compared with the healthy controls (p < 0.001). Higher galectin-3 levels were closely associated with older ages (p < 0.001), the medical history of psoriasis (p = 0.036), coagulopathy (p = 0.042), and CD34 expression (p = 0.004). Compared with patients with lower galectin-3 levels, those with higher galectin-3 levels had significant shorter overall survival (p = 0.028) and relapse-free survival (p = 0.001). Multivariate analysis showed that serum galectin-3 was an independent unfavorable factor for relapse-free survival in patients with APL treated with all-trans retinoic acid and arsenic trioxide-based frontline therapy. Clinical impact of galectin-3 should be further investigated in patients with APL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Breccia M, De Propris MS, Stefanizzi et al (2014) Negative prognostic value of CD34 antigen also in expressed on a small population of acute promyelocytic leukemia cells. Ann Hematol 93:1819–1823

    Article  CAS  PubMed  Google Scholar 

  2. Montesinos P, Rayon C, Vellenga E et al (2011) Clinical significance of CD56 expression in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline-based regimens. Blood 117:1799–1805

    Article  CAS  PubMed  Google Scholar 

  3. Xu F, Yin CX, Wang CL et al (2014) Immunophenotypes and immune markers associated with acute promyelocytic leukemia prognosis. Dis Mark 2014:421906

    Google Scholar 

  4. Lucena-Araujo AR, Kim HT, Jacomo RH et al (2014) Internal tandem duplication of the FLT3 gene confers poor overall survival in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline-based chemotherapy: an International Consortium on Acute Promyelocytic Leukemia study. Ann Hematol 93:2001–2010

    Article  CAS  PubMed  Google Scholar 

  5. Jia W, Kidoya H, Yamakawa D et al (2013) Galectin-3 accelerates M2 macrophage infiltration and angiogenesis in tumors. Am J Pathol 182:1821–1831

    Article  CAS  PubMed  Google Scholar 

  6. Jiang SS, Weng DS, Wang QJ et al (2014) Galectin-3 is associated with a poor prognosis in primary hepatocellular carcinoma. J Transl Med 12:273

    Article  PubMed  PubMed Central  Google Scholar 

  7. de Oliveira JT, Ribeiro C, Barros R et al (2015) Hypoxia up-regulates galectin-3 in mammary tumor progression and metastasis. PLoS One 10:e0134458

    Article  PubMed  PubMed Central  Google Scholar 

  8. Braeuer RR, Zigler M, Kamiya T et al (2012) Galectin-3 contributes to melanoma growth and metastasis via regulation of NFAT1 and autotaxin. Cancer Res 72:5757–5766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim SJ, Shin JY, Lee KD et al (2011) Galectin-3 facilitates cell motility in gastric cancer by up-regulating protease-activated receptor-1 (PAR-1) and matrix metalloproteinase-1 (MMP-1). PLoS One 6:e25103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yamaki S, Fujii T, Yajima R et al (2013) Clinicopathological significance of decreased galectin-3 expression and the long-term prognosis in patients with breast cancer. Surg Today 43:901–905

    Article  CAS  PubMed  Google Scholar 

  11. Li ZW, Wang Y, Xue WC et al (2013) Expression and prognostic significance of galectin-1 and galectin-3 in benign nevi and melanomas. Zhonghua Bing Li Xue Za Zhi 42:801–805

    CAS  PubMed  Google Scholar 

  12. Leal MF, Calcagno DQ, Chung J et al (2015) Deregulated expression of annexin-A2 and galectin-3 is associated with metastasis in gastric cancer patients. Clin Exp Med 15:415–420

    Article  CAS  PubMed  Google Scholar 

  13. Hsu DK, Yang DY, Pan Z et al (2000) Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses. Am J Pathol 156:1073–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang R, Sun T, Song L, Zuo D, Xiao W (2014) Increased levels of serum galectin-3 in patients with primary Sjögren's syndrome: associated with interstitial lung disease. Cytokine 69:289–293

    Article  CAS  PubMed  Google Scholar 

  15. Yamamoto-Sugitani M, Kuroda J, Ashihara E et al (2011) Galectin-3 (gal-3) induced by leukemia microenvironment promotes drug resistance and bone marrow lodgment in chronic myelogenous leukemia. Proc Natl Acad Sci U S A 108:17468–17473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hoyer KK, Pang M, Gui D et al (2004) An anti-apoptotic role for galectin-3 in diffuse large B-cell lymphomas. Am J Pathol 164:893–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Clark MC et al (2012) Galectin-3 binds to CD45 on diffuse large B-cell lymphoma cells to regulate susceptibility to cell death. Blood 120:4635–4644. doi:10.1182/blood-2012-06-438234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Clark MC, Pang M, Hsu DK et al (2008) Increased serum 90 K and galectin-3 expression are associated with advanced stage and a worse prognosis indiffuse large B-cell lymphomas. Acta Haematol 120:211–216

    Google Scholar 

  19. Cheng CL, Hou HA, Lee MC et al (2013) Higher bone marrow LGALS3 expression is an independent unfavorable prognostic factor for overall survival in patients with acute myeloid leukemia. Blood 121:3172–3180

    Article  CAS  PubMed  Google Scholar 

  20. van Dongen JJM, Macintyre EA, Gabert JA et al (1999) Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Leukemia 13:1901–1928

    Article  PubMed  Google Scholar 

  21. Gabert J, Beillard E, van der Velden VHJ et al (2003) Standardization and quality control studies of real-time quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia: a Europe against cancer program. Leukemia 17:2318–2357

    Article  CAS  PubMed  Google Scholar 

  22. Asgarian-Omran H, Forghani P, Hojjat-Farsangi M, Roohi A, Sharifian RA, Razavi SM et al (2010) Expression profile of galectin-1 and galectin-3 molecules in different subtypes of chronic lymphocytic leukemia. Cancer Investig 28:717–725

    Article  CAS  Google Scholar 

  23. D'Haene N, Catteau X, Maris C, Martin B, Salmon I, Decaestecker C (2008) Endothelial hyperplasia and endothelial galectin-3 expression are prognostic factors in primarycentral nervous system lymphomas. Br J Haematol 140:402–410

    Article  PubMed  Google Scholar 

  24. Hu K, Gu Y, Lou L et al (2015) Galectin-3 mediates bone marrow microenvironment-induced drug resistance in acute leukemia cells via Wnt/β-catenin signaling pathway. J Hematol Oncol 8:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sanz MA, Lo Coco F, Martín G et al (2000) Definition of relapse risk and role of nonanthracycline drugs for consolidation in patients with acute promyelocytic leukemia: a joint study of the PETHEMA and GIMEMA cooperative groups. Blood 96:1247–1253

    CAS  PubMed  Google Scholar 

  26. Lehmann S, Ravn A, Carlsson L et al (2011) Continuing high early death rate in acute promyelocytic leukemia: a population-based report from the Swedish adult acute leukemia registry. Leukemia 25:1128–1134

    Article  CAS  PubMed  Google Scholar 

  27. Avvisati G, Lo-Coco F, Paoloni FP et al (2011) AIDA 0493 protocol for newly diagnosed acute promyelocytic leukemia: very long-term results and role of maintenance. Blood 117:4716–4725

    Article  CAS  PubMed  Google Scholar 

  28. Chendamarai E, Ganesan S, Alex AA et al (2015) Comparison of newly diagnosed and relapsed patients with acute promyelocytic leukemia treated with arsenic trioxide: insight into mechanisms of resistance. PLoS One 10:e0121912

    Article  PubMed  PubMed Central  Google Scholar 

  29. Iland HJ, Bradstock K, Supple SG et al (2012) All-trans-retinoic acid, idarubicin, and IV arsenic trioxide as initial therapy in acute promyelocytic leukemia (APML4). Blood 120:1570–1580

    Article  CAS  PubMed  Google Scholar 

  30. de Thé H, Chen Z (2010) Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nat Rev Cancer 10:775–783

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medical and Health science and Technology Development Program (2015WS0508) of Shandong and Binzhou Medical University Scientific Research Fund (BY2013KJ38).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Figure S1

(DOCX 34 kb)

Figure S2

(DOCX 35 kb)

Figure S3

(DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, N., Wang, XX., Sun, JR. et al. Clinical impact of galectin-3 in newly diagnosed t (15;17)(q22;q21)/PML-RARa acute promyelocytic leukemia treated with all-trans retinoic acid and arsenic trioxide-based regimens. Ann Hematol 96, 711–718 (2017). https://doi.org/10.1007/s00277-017-2948-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-017-2948-3

Keywords

Navigation