Skip to main content
Log in

High-resolution copy number analysis of paired normal-tumor samples from diffuse large B cell lymphoma

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Copy number analysis can be useful for assessing prognosis in diffuse large B cell lymphoma (DLBCL). We analyzed copy number data from tumor samples of 60 patients diagnosed with DLBCL de novo and their matched normal samples. We detected 63 recurrent copy number alterations (CNAs), including 33 gains, 30 losses, and nine recurrent acquired copy number neutral loss of heterozygosity (CNN-LOH). Interestingly, 20 % of cases acquired CNN-LOH of 6p21 locus, which involves the HLA region. In normal cells, there were no CNAs but we observed CNN-LOH involving some key lymphoma regions such as 6p21 and 9p24.1 (5 %) and 17p13.1 (2.5 %) in DLBCL patients. Furthermore, a model with some specific CNA was able to predict the subtype of DLBCL, 1p36.32 and 10q23.31 losses being restricted to germinal center B cell-like (GCB) DLBCL. In contrast, 8p23.3 losses and 11q24.3 gains were strongly associated with the non-GCB subtype. A poor prognosis was associated with biallelic inactivation of TP53 or 18p11.32 losses, while prognosis was better in cases carrying 11q24.3 gains. In summary, CNA abnormalities identify specific DLBCL groups, and we describe CNN-LOH in germline cells from DLBCL patients that are associated with genes that probably play a key role in DLBCL development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Swerdlow SH, Cancer IA for R on (2008) WHO classification of tumours of haematopoietic and lymphoid tissues: vol. 2: International Agency for Research on Cancer, Edición: 4th ed., 2008. WHO

  2. Alizadeh AA, Eisen MB, Davis RE et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511. doi:10.1038/35000501

    Article  PubMed  CAS  Google Scholar 

  3. Lenz G, Wright G, Dave SS et al (2008) Stromal gene signatures in large-B-cell lymphomas. N Engl J Med 359:2313–2323. doi:10.1056/NEJMoa0802885

    Article  PubMed  CAS  Google Scholar 

  4. Hans CP, Weisenburger DD, Greiner TC et al (2004) Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 103:275–282. doi:10.1182/blood-2003-05-1545

    Article  PubMed  CAS  Google Scholar 

  5. Choi WWL, Weisenburger DD, Greiner TC et al (2009) A new immunostain algorithm classifies diffuse large B-cell lymphoma into molecular subtypes with high accuracy. Clin Cancer Res Off J Am Assoc Cancer Res 15:5494–5502. doi:10.1158/1078-0432.CCR-09-0113

    Article  CAS  Google Scholar 

  6. Meyer PN, Fu K, Greiner TC et al (2011) Immunohistochemical methods for predicting cell of origin and survival in patients with diffuse large B-cell lymphoma treated with rituximab. J Clin Oncol Off J Am Soc Clin Oncol 29:200–207. doi:10.1200/JCO.2010.30.0368

    Article  Google Scholar 

  7. Visco C, Li Y, Xu-Monette ZY et al (2012) Comprehensive gene expression profiling and immunohistochemical studies support application of immunophenotypic algorithm for molecular subtype classification in diffuse large B-cell lymphoma: a report from the International DLBCL Rituximab-CHOP Consortium Program Study. Leukemia 26:2103–2113. doi:10.1038/leu.2012.83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Gutiérrez-García G, Cardesa-Salzmann T, Climent F et al (2011) Gene-expression profiling and not immunophenotypic algorithms predicts prognosis in patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Blood 117:4836–4843. doi:10.1182/blood-2010-12-322362

    Article  PubMed  CAS  Google Scholar 

  9. Nyman H, Adde M, Karjalainen-Lindsberg M-L et al (2007) Prognostic impact of immunohistochemically defined germinal center phenotype in diffuse large B-cell lymphoma patients treated with immunochemotherapy. Blood 109:4930–4935. doi:10.1182/blood-2006-09-047068

    Article  PubMed  CAS  Google Scholar 

  10. Fu K, Weisenburger DD, Choi WWL et al (2008) Addition of rituximab to standard chemotherapy improves the survival of both the germinal center B-cell-like and non-germinal center B-cell-like subtypes of diffuse large B-cell lymphoma. J Clin Oncol Off J Am Soc Clin Oncol 26:4587–4594. doi:10.1200/JCO.2007.15.9277

    Article  CAS  Google Scholar 

  11. Savage KJ, Johnson NA, Ben-Neriah S et al (2009) MYC gene rearrangements are associated with a poor prognosis in diffuse large B-cell lymphoma patients treated with R-CHOP chemotherapy. Blood 114:3533–3537. doi:10.1182/blood-2009-05-220095

    Article  PubMed  CAS  Google Scholar 

  12. Barrans S, Crouch S, Smith A et al (2010) Rearrangement of MYC is associated with poor prognosis in patients with diffuse large B-cell lymphoma treated in the era of rituximab. J Clin Oncol Off J Am Soc Clin Oncol 28:3360–3365. doi:10.1200/JCO.2009.26.3947

    Article  CAS  Google Scholar 

  13. Akyurek N, Uner A, Benekli M, Barista I (2012) Prognostic significance of MYC, BCL2, and BCL6 rearrangements in patients with diffuse large B-cell lymphoma treated with cyclophosphamide, doxorubicin, vincristine, and prednisone plus rituximab. Cancer 118:4173–4183. doi:10.1002/cncr.27396

    Article  PubMed  CAS  Google Scholar 

  14. Ueda C, Nishikori M, Kitawaki T et al (2004) Coexistent rearrangements of c-MYC, BCL2, and BCL6 genes in a diffuse large B-cell lymphoma. Int J Hematol 79:52–54

    Article  PubMed  CAS  Google Scholar 

  15. Hummel M, Bentink S, Berger H et al (2006) A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N Engl J Med 354:2419–2430. doi:10.1056/NEJMoa055351

    Article  PubMed  CAS  Google Scholar 

  16. Pasqualucci L, Dominguez-Sola D, Chiarenza A et al (2011) Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 471:189–195. doi:10.1038/nature09730

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Pasqualucci L, Trifonov V, Fabbri G et al (2011) Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet 43:830–837. doi:10.1038/ng.892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Lohr JG, Stojanov P, Lawrence MS et al (2012) Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci U S A 109:3879–3884. doi:10.1073/pnas.1121343109

    Article  PubMed  PubMed Central  Google Scholar 

  19. Morin RD, Mungall K, Pleasance E et al (2013) Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing. Blood 122:1256–1265. doi:10.1182/blood-2013-02-483727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lossos IS, Morgensztern D (2006) Prognostic biomarkers in diffuse large B-cell lymphoma. J Clin Oncol Off J Am Soc Clin Oncol 24:995–1007. doi:10.1200/JCO.2005.02.4786

    Article  CAS  Google Scholar 

  21. Ichikawa A, Kinoshita T, Watanabe T et al (1997) Mutations of the p53 gene as a prognostic factor in aggressive B-cell lymphoma. N Engl J Med 337:529–534. doi:10.1056/NEJM199708213370804

    Article  PubMed  CAS  Google Scholar 

  22. Young KH, Weisenburger DD, Dave BJ et al (2007) Mutations in the DNA-binding codons of TP53, which are associated with decreased expression of TRAILreceptor-2, predict for poor survival in diffuse large B-cell lymphoma. Blood 110:4396–4405. doi:10.1182/blood-2007-02-072082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Zainuddin N, Berglund M, Wanders A et al (2009) TP53 mutations predict for poor survival in de novo diffuse large B-cell lymphoma of germinal center subtype. Leuk Res 33:60–66. doi:10.1016/j.leukres.2008.06.022

    Article  PubMed  CAS  Google Scholar 

  24. Osada M, Ishioka C, Ichinohasama R et al (1999) Influence of p53 mutation on pathological grade, but not prognosis of non-Hodgkin’s lymphoma. Anticancer Drug Des 14:107–114

    PubMed  CAS  Google Scholar 

  25. Barrans SL, Carter I, Owen RG et al (2002) Germinal center phenotype and bcl-2 expression combined with the International Prognostic Index improves patient risk stratification in diffuse large B-cell lymphoma. Blood 99:1136–1143

    Article  PubMed  CAS  Google Scholar 

  26. Jiménez C, Sebastián E, Chillón MC et al (2013) MYD88 L265P is a marker highly characteristic of, but not restricted to, Waldenström’s macroglobulinemia. Leukemia 27:1722–1728. doi:10.1038/leu.2013.62

    Article  PubMed  CAS  Google Scholar 

  27. Ngo VN, Young RM, Schmitz R et al (2011) Oncogenically active MYD88 mutations in human lymphoma. Nature 470:115–119. doi:10.1038/nature09671

    Article  PubMed  CAS  Google Scholar 

  28. Zhang J, Grubor V, Love CL et al (2013) Genetic heterogeneity of diffuse large B-cell lymphoma. Proc Natl Acad Sci U S A 110:1398–1403. doi:10.1073/pnas.1205299110

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bea S, Zettl A, Wright G et al (2005) Diffuse large B-cell lymphoma subgroups have distinct genetic profiles that influence tumor biology and improve gene-expression-based survival prediction. Blood 106:3183–3190. doi:10.1182/blood-2005-04-1399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Scholtysik R, Kreuz M, Hummel M et al (2015) Characterization of genomic imbalances in diffuse large B-cell lymphoma by detailed SNP-chip analysis. Int J Cancer 136:1033–1042. doi:10.1002/ijc.29072

    Article  PubMed  CAS  Google Scholar 

  31. Lenz G, Staudt LM (2010) Aggressive lymphomas. N Engl J Med 362:1417–1429. doi:10.1056/NEJMra0807082

    Article  PubMed  CAS  Google Scholar 

  32. Heinrichs S, Li C, Look AT (2010) SNP array analysis in hematologic malignancies: avoiding false discoveries. Blood 115:4157–4161. doi:10.1182/blood-2009-11-203182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Jacobs KB, Yeager M, Zhou W et al (2012) Detectable clonal mosaicism and its relationship to aging and cancer. Nat Genet 44:651–658. doi:10.1038/ng.2270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Scandurra M, Mian M, Greiner TC et al (2010) Genomic lesions associated with a different clinical outcome in diffuse large B-cell lymphoma treated with R-CHOP-21. Br J Haematol 151:221–231. doi:10.1111/j.1365-2141.2010.08326.x

    Article  PubMed  Google Scholar 

  35. Green MR, Aya-Bonilla C, Gandhi MK et al (2011) Integrative genomic profiling reveals conserved genetic mechanisms for tumorigenesis in common entities of non-Hodgkin’s lymphoma. Genes Chromosomes Cancer 50:313–326. doi:10.1002/gcc.20856

    Article  PubMed  CAS  Google Scholar 

  36. Monti S, Chapuy B, Takeyama K et al (2012) Integrative analysis reveals an outcome-associated and targetable pattern of p53 and cell cycle deregulation in diffuse large B cell lymphoma. Cancer Cell 22:359–372. doi:10.1016/j.ccr.2012.07.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Wang Y, Carlton VEH, Karlin-Neumann G et al (2009) High quality copy number and genotype data from FFPE samples using molecular inversion probe (MIP) microarrays. BMC Med Genomics 2:8. doi:10.1186/1755-8794-2-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. van Dongen JJM, Langerak AW, Brüggemann M et al (2003) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 17:2257–2317. doi:10.1038/sj.leu.2403202

    Article  PubMed  Google Scholar 

  39. Gonzalez D, Martinez P, Wade R et al (2011) Mutational status of the TP53 gene as a predictor of response and survival in patients with chronic lymphocytic leukemia: results from the LRF CLL4 trial. J Clin Oncol Off J Am Soc Clin Oncol 29:2223–2229. doi:10.1200/JCO.2010.32.0838

    Article  Google Scholar 

  40. Jiménez C, Chillón MDC, Balanzategui A et al (2014) Detection of MYD88 L265P mutation by real-time allele-specific oligonucleotide polymerase chain reaction. Appl Immunohistochem Mol Morphol AIMM Off Publ Soc Appl Immunohistochem 22:768–773. doi:10.1097/PAI.0000000000000020

    Article  CAS  Google Scholar 

  41. Sebastián E, Alcoceba M, Balanzategui A et al (2012) Molecular characterization of immunoglobulin gene rearrangements in diffuse large B-cell lymphoma: antigen-driven origin and IGHV4-34 as a particular subgroup of the non-GCB subtype. Am J Pathol 181:1879–1888. doi:10.1016/j.ajpath.2012.07.028

    Article  PubMed  CAS  Google Scholar 

  42. Alcoceba M, Sebastián E, Marín L et al (2013) HLA specificities are related to development and prognosis of diffuse large B-cell lymphoma. Blood 122:1448–1454. doi:10.1182/blood-2013-02-483420

    Article  PubMed  CAS  Google Scholar 

  43. Sidney J, Peters B, Frahm N et al (2008) HLA class I supertypes: a revised and updated classification. BMC Immunol 9:1. doi:10.1186/1471-2172-9-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Greenbaum J, Sidney J, Chung J et al (2011) Functional classification of class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a surprising degree of repertoire sharing across supertypes. Immunogenetics 63:325–335. doi:10.1007/s00251-011-0513-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Rausch T, Jones DTW, Zapatka M et al (2012) Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148:59–71. doi:10.1016/j.cell.2011.12.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Edelmann J, Holzmann K, Miller F et al (2012) High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations. Blood 120:4783–4794. doi:10.1182/blood-2012-04-423517

    Article  PubMed  CAS  Google Scholar 

  47. Zhang C-Z, Leibowitz ML, Pellman D (2013) Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements. Genes Dev 27:2513–2530. doi:10.1101/gad.229559.113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Salaverria I, Martin-Guerrero I, Wagener R et al (2014) A recurrent 11q aberration pattern characterizes a subset of MYC-negative high-grade B-cell lymphomas resembling Burkitt lymphoma. Blood 123:1187–1198. doi:10.1182/blood-2013-06-507996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Lenz G, Wright GW, Emre NCT et al (2008) Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proc Natl Acad Sci U S A 105:13520–13525. doi:10.1073/pnas.0804295105

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kreisel F, Kulkarni S, Kerns RT et al (2011) High resolution array comparative genomic hybridization identifies copy number alterations in diffuse large B-cell lymphoma that predict response to immuno-chemotherapy. Cancer Genet 204:129–137. doi:10.1016/j.cancergen.2010.12.010

    Article  PubMed  CAS  Google Scholar 

  51. Beà S, Colomo L, López-Guillermo A et al (2004) Clinicopathologic significance and prognostic value of chromosomal imbalances in diffuse large B-cell lymphomas. J Clin Oncol Off J Am Soc Clin Oncol 22:3498–3506. doi:10.1200/JCO.2004.11.025

    Article  CAS  Google Scholar 

  52. Jordanova ES, Riemersma SA, Philippo K et al (2003) Beta2-microglobulin aberrations in diffuse large B-cell lymphoma of the testis and the central nervous system. Int J Cancer 103:393–398. doi:10.1002/ijc.10824

    Article  PubMed  CAS  Google Scholar 

  53. Booman M, Szuhai K, Rosenwald A et al (2008) Genomic alterations and gene expression in primary diffuse large B-cell lymphomas of immune-privileged sites: the importance of apoptosis and immunomodulatory pathways. J Pathol 216:209–217. doi:10.1002/path.2399

    Article  PubMed  CAS  Google Scholar 

  54. Sehn LH (2009) Early detection of patients with poor risk diffuse large B-cell lymphoma. Leuk Lymphoma 50:1744–1747. doi:10.3109/10428190903308064

    Article  PubMed  Google Scholar 

  55. Montes-Moreno S, Batlle A, de Villambrosía SG et al (2014) Risk adapted high-dose and dose-dense therapies modulate the impact of biological classification in diffuse large B-cell lymphoma prognosis. Haematologica 99:e138–141. doi:10.3324/haematol.2014.104976

    Article  PubMed  PubMed Central  Google Scholar 

  56. Testoni M, Chung EYL, Priebe V, Bertoni F (2015) The transcription factor ETS1 in lymphomas: friend or foe? Leuk Lymphoma 56:1975–1980. doi:10.3109/10428194.2014.981670

    Article  PubMed  CAS  Google Scholar 

  57. Siegel RM, Chan FK, Chun HJ, Lenardo MJ (2000) The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nat Immunol 1:469–474. doi:10.1038/82712

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Alicia Antón, Montserrat Hernández-Ruano, Rebeca Maldonado, Alejandra Martín, and Ana Díaz (University Hospital of Salamanca, Salamanca, Spain); Eva García-García (Center of Cancer Research, Salamanca, Spain); and Mark Catherwood (Belfast City Hospital, Belfast, UK) for their technical support. We are grateful to José Ramón González-Porras, María Victoria Mateos, and Jesús Martín Sánchez for their intellectual and statistical support. We also thank all members of GELTAMO and the patients who participated in this study.

This work was supported by research funding from the Health Council of Castilla y León (GRS265/A/08), the Health Research Program (PS09/01382), and the Red Temática de Investigación Cooperativa en Cáncer (RTICC) grant RD12/0036 (groups 0069, 0029, 0036, 0058, and 0060) included in the National Plan I+D+I supported by the Instituto Carlos III and the Fondo Europeo de Desarrollo Regional (FEDER), the Spanish Ministry of Economy and Competitiveness, and the European Regional Development Fund (ERDF) “Una manera de hacer Europa” (Innocampus; CEI-2010-1-0010).

ES was supported by CM10/00078-Río Hortega, an ISCIII contract, FEHH grant 2013–2014 and JR14/00025-Juan Rodés, an ISCIII contract. IS was supported by the Subprograma Juan de la Cierva (JCI-2011-10232) and a Miguel Servet contract (CP13/00159).

Authors’ contributions

ES, MA, LM, MDC, RGS, and MG made the conception and design of the research. ES obtained molecular results, assisted by MA, AB, CJ, MG, NCG, and AA. MES, IP, and RC provided support for the molecular results. ES, IS, and DMG analyzed copy number data. MA provided support for data analysis. MSB performed the statistical analyses, assisted by DMG and ES. GP, LM, and MCC provided statistical support. EGB, EP, and MDC provided patient samples and/or clinical data. AC provided biological data. OB and SMM provided samples and performed the pathology review. ES wrote the first draft of the manuscript. IS reviewed the first version and rewrote it. ES, IS, DMG, MA, LM, RGS, and MG reviewed the final manuscript. MG, RGS, LM, and ES obtained the financial support for the study. MG was the head of the group. IS, RGS, and MG produced the final revision of the manuscript. All the authors read the manuscript and gave the final approval for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón García-Sanz.

Ethics declarations

Informed consent was provided by all participants. The study was performed in accordance with the Declaration of Helsinki and Spanish legislation. The study was approved by the local Ethics Review Committee.

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Elena Sebastián, Miguel Alcoceba, David Martín-García, Itziar Salaverria, Ramón García-Sanz and Marcos González contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 11630 kb)

ESM 2

(XLS 212 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebastián, E., Alcoceba, M., Martín-García, D. et al. High-resolution copy number analysis of paired normal-tumor samples from diffuse large B cell lymphoma. Ann Hematol 95, 253–262 (2016). https://doi.org/10.1007/s00277-015-2552-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-015-2552-3

Keywords

Navigation