Skip to main content
Log in

Transfusion dependency at diagnosis and transfusion intensity during initial chemotherapy are associated with poorer outcomes in adult acute myeloid leukemia

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Blood transfusions can modify host immunity and clinical outcomes in hematological malignancies. One thousand sixty-seven patients with acute myeloid leukemia (AML) were studied for their transfusion dependency at initial presentation and transfusion frequency during induction chemotherapy. Three hundred five patients (29 %) showed initial dependence to red blood cell (RBC) transfusion and 109 (10 %) to platelet transfusion. Transfusion dependency at presentation was associated with a poorer prognosis. Both initial RBC and platelet transfusion needs were associated with lower response rates (P = 0.04 and P = 0.03). Median overall survival (OS) was 10.8 months for patients with RBC need vs 18.8 months for the other patients (P = 0.02) and 6.8 months for patients with platelet transfusion need vs 13.6 months for the others (P = 0.01). Similarly, transfusion intensity during induction therapy influenced negatively treatment outcome. Median transfusion burden per week was 2.5 (range 0–25.7) RBC units and 1.6 (range 0–15.7) platelet concentrates (PCs). Both high RBC and PC transfusion intensities were associated with lower response rates (P = 0.003 and P < 0.0001). Median OS was 9.08 months for patients with RBC transfusions >3/week vs 18.29 months for those with RBC transfusions ≤3/week (P = 0.0003) and 10.75 months for patients with PC transfusions >2/week vs 19.96 months for those with PC ≤2/week (P = 0.0003). RBC and platelet transfusion intensities during induction therapy remained of prognostic value in multivariate analysis. Transfusion need at presentation and the frequency of transfusions during induction chemotherapy appear as strong prognostic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Döhner H, Estey EH, Amadori S et al (2010) Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 115:453–474

    Article  PubMed  Google Scholar 

  2. Estey E, Döhner H (2006) Acute myeloid leukaemia. Lancet 368:1894–1907

    Article  PubMed  Google Scholar 

  3. Pemmaraju N, Kantarjian H, Garcia-Manero G, et al. (2014) Improving outcomes for patients with acute myeloid leukemia in first relapse: a single center experience. Am J Hematol doi: 10.1002/ajh.23858 [Epub ahead of print]

  4. Grimwade D, Walker H, Oliver F et al (1998) The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. Blood 92:2322–2333

    CAS  PubMed  Google Scholar 

  5. Tartter PI (1995) Immunologic effects of blood transfusion. Immunol Invest 24:277–288

    Article  CAS  PubMed  Google Scholar 

  6. Aul C, Gattermann N, Heyll A, Germing U, Derigs G, Schneider W (1992) Primary myelodysplastic syndromes: analysis of prognostic factors in 235 patients and proposals for an improved scoring system. Leukemia 6:52–59

    CAS  PubMed  Google Scholar 

  7. Malcovati L, Germing U, Kuendgen A et al (2007) Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes. J Clin Oncol 25:3503–3510

    Article  PubMed  Google Scholar 

  8. Patnaik MM, Lasho TL, Finke CM et al (2010) WHO-defined ‘myelodysplastic syndrome with isolated del(5q)’ in 88 consecutive patients: survival data, leukemic transformation rates and prevalence of JAK2, MPL, and IDH mutations. Leukemia 24:1283–1289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Pereira A, Nomdedeu M, Aguilar JL et al (2011) Transfusion intensity, not the cumulative red blood cell transfusion burden, determines the prognosis of patients with myelodysplastic syndrome on chronic transfusion support. Am J Hematol 86:245–250

    Article  PubMed  Google Scholar 

  10. Pardanani A, Tefferi A (2011) Prognostic relevance of anemia and transfusion dependency in myelodysplastic syndromes and primary myelofibrosis. Haematologica 96:8–10

    Article  PubMed Central  PubMed  Google Scholar 

  11. Cervantes F, Dupriez B, Pereira A et al (2009) New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 113:2895–2901

    Article  CAS  PubMed  Google Scholar 

  12. Le Jeune C, Bertoli S, Elhamri M et al (2014) Initial absolute lymphocyte count as a prognostic factor for outcome in acute myeloid leukemia. Leuk Lymph 55:855–862

    Article  Google Scholar 

  13. Thomas X, Chelghoum Y, Cannas G et al (2011) Leukocytosis and circulating blasts in older adults with newly diagnosed acute myeloid leukemia: are they valuable factors for therapeutic decision-making? Clin Lymph Myel Leuk 11:342–349

    Article  CAS  Google Scholar 

  14. Cheson BD, Bennett JM, Kopecky KJ et al (2003) Revised recommendations of the International Working Group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol 21:4642–4649

    Article  PubMed  Google Scholar 

  15. Jaime-Perez JC, Colunga-Pedraza PR, Gomez-Almaguer DG (2011) Is the number of blood products transfused associated with lower survival in children with acute lymphoblastic leukemia? Pediatr Blood Cancer 57:217–223

    Article  PubMed  Google Scholar 

  16. Freiberg A, Hancock M, Kunkel K (1994) Transfusions and risk of failure in childhood acute lymphoblastic leukemia. Leukemia 8:1220–1223

    CAS  PubMed  Google Scholar 

  17. Malcovati L, Porta MG, Pascutto C et al (2005) Prognostic factors and life expectancy in myelodysplastic syndromes classified according to WHO criteria: a basis for clinical decision making. J Clin Oncol 23:7594–7603

    Article  PubMed  Google Scholar 

  18. Kantarjian H, O’Brien S, Ravandi F et al (2008) Proposal for a new risk model in myelodysplastic syndrome that accounts for events not considered in the original International Prognostic Scoring System. Cancer 113:1351–1361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Tefferi A, Siragusa S, Hussein K et al (2009) Transfusion-dependency at presentation and its acquisition in the first year of diagnosis are both equally detrimental for survival in primary myelofibrosis—prognostic relevance is dependent of IPSS or karyotype. Am J Hematol 85:14–17

    Google Scholar 

  20. Elena C, Passamonti F, Rumi E et al (2011) Red blood cell transfusion-dependency implies a poor survival in primary myelofibrosis irrespective of International Prognostic Scoring System and Dynamic International Prognostic Scoring System. Haematologica 96:167–170

    Article  PubMed Central  PubMed  Google Scholar 

  21. Passamonti F, Cervantes F, Vannucchi AM et al (2010) A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood 115:1703–1708

    Article  CAS  PubMed  Google Scholar 

  22. Chee CE, Steensma DP, Wu W, Hanson CA, Tefferi A (2008) Neither serum ferritin nor the number of red blood cell transfusions affect overall survival in refractory anemia with ringed sideroblasts. Am J Hematol 83:611–613

    Article  CAS  PubMed  Google Scholar 

  23. Tefferi A, Mesa RA, Pardanani A et al (2009) Red blood cell transfusion need at diagnosis adversely affects survival in primary myelofibrosis-increased serum ferritin or transfusion load does not. Am J Hematol 84:265–267

    Article  CAS  PubMed  Google Scholar 

  24. Vamvakas EC, Blajchman MA (2007) Transfusion-related immunomodulation (TRIM): an update. Blood Rev 21:327–348

    Article  PubMed  Google Scholar 

  25. Roelen DL, van Rood JJ, Brand A et al (2000) Immunomodulation by blood transfusions. Vox Sang 78:273–275

    PubMed  Google Scholar 

  26. Bordin JO, Heddle NM, Blajchman MA (1994) Biologic effects of leukocytes present in transfused cellular blood products. Blood 84:1703–1721

    CAS  PubMed  Google Scholar 

  27. Prins HA, Houdijk AP, Nijveldt RJ et al (2001) Arginase release from red blood cells: possible link in transfusion induced immune suppression? Shock 16:113–115

    Article  CAS  PubMed  Google Scholar 

  28. Davenport RD (2009) An introduction to chemokines and their roles in transfusion medicine. Vox Sang 96:183–198

    Article  CAS  PubMed  Google Scholar 

  29. Cognasse F, Boussoulade F, Chavarin P et al (2006) Release of potential immunomodulatory factors during platelet storage. Transfusion 46:1184–1189

    Article  CAS  PubMed  Google Scholar 

  30. Wadhwa M, Seghatchian MJ, Lubenko A et al (1996) Cytokine levels in platelet concentrates: quantitation by bioassays and immunoassays. Br J Haematol 93:225–234

    Article  CAS  PubMed  Google Scholar 

  31. Edvardsen L, Taaning E, Mynster T, Hvolris J, Drachman O, Nielsen HJ (1998) Bioactive substances in buffy-coat-derived platelet pools stored in platelet-additive solutions. Br J Haematol 103:445–448

    Article  CAS  PubMed  Google Scholar 

  32. Aldinucci D, Poletto D, Nanni P et al (2002) CD40L induces proliferation, self-renewal, rescue from apoptosis, and production of cytokines by CD40-expressing AML blasts. Exp Hematol 30:1283–1292

    Article  CAS  PubMed  Google Scholar 

  33. Romagnani S (2000) T-cell subsets (Th1 versus Th2). Ann Allergy Asthma Immunol 85:9–18

    Article  CAS  PubMed  Google Scholar 

  34. Komanduri KV, Wieder ED, Benjamin CL, Levy RB (2013) The evolving art of hematopoietic stem cell transplantation: translational research in post-transplant immune reconstitution and immunosuppression. Immunol Res 57:140–150

    Article  CAS  PubMed  Google Scholar 

  35. Velardi E, Dudakov JA, van den Brink MR (2013) Clinical strategies to enhance thymic recovery after allogeneic hematopoietic stem cell transplantation. Immunol Let 155:31–35

    Article  CAS  Google Scholar 

  36. Blumberg N (2005) Deleterious clinical effects of transfusion immunomodulation: proven beyond a reasonable doubt. Transfusion 45:33S–39S, discussion 39S-40S

    Article  PubMed  Google Scholar 

  37. Landers DF, Hill GE, Wong KC et al (1996) Blood transfusion-induced immunomodulation. Anesth Analg 82:187–204

    CAS  PubMed  Google Scholar 

  38. Lapierre V, Auperin A, Tiberghien P (1998) Transfusion-induced immunomodulation following cancer surgery: fact or fiction? J Natl Cancer Inst 90:573–580

    Article  CAS  PubMed  Google Scholar 

  39. Rohde JM, Dimcheff DE, Blumberg N et al (2014) Health care-associated infection after red blood cell transfusion: a systematic review and meta-analysis. JAMA 311:1317–1326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Blajchman MA, Bardossy L, Carmen R, Sastry A, Singal DP (1993) Allogeneic blood transfusion-induced enhancement of tumor growth: two animal models showing amelioration by leukodepletion and passive transfer using spleen cells. Blood 81:1880–1882

    CAS  PubMed  Google Scholar 

  41. Blumberg N, Heal JM, Murphy P et al (1986) Association between transfusion of whole blood and recurrence of cancer. Br Med J 293:530–533

    Article  CAS  Google Scholar 

  42. Carson JL, Carless PA, Hebert PC (2012) Transfusion thresholds and other strategies for guiding allogeneic red blood cell transfusion. Cochrane Database Syst Rev 4:CD002042

    PubMed Central  PubMed  Google Scholar 

  43. Jansen AJ, Caljouw MA, Hop WC, van Rhenen DJ, Schipperus MR (2004) Feasibility of a restrictive red-cell transfusion policy for patients treated with chemotherapy for acute myeloid leukaemia. Transfus Med 14:33–38

    Article  CAS  PubMed  Google Scholar 

  44. Salpeter SR, Buckley JS, Chatterjee S (2014) Impact of more restrictive blood transfusion strategies on clinical outcomes: a meta-analysis and systematic review. Am J Med 127:124–131

    Article  CAS  PubMed  Google Scholar 

  45. Estcourt L, Stanworth S, Doree C et al (2012) Prophylactic platelet transfusion for prevention of bleeding in patients with haematological disorders after chemotherapy and stem cell transplantation. Cochrane Database Syst Rev 5:CD004269

    PubMed  Google Scholar 

  46. Stanworth SJ, Estcourt L, Powter G et al (2013) A no-prophylaxis platelet-transfusion strategy for hematologic cancers. N Engl J Med 368:1771–1780

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

All authors declare no conflict of interest.

Authors’ contributions

GC collected the transfusion data, interpreted the data, and wrote the manuscript. JF, MR, HD, GB, and MF collected the transfusion data. ME collected the patient data and provided technical support. GS reviewed the manuscript and gave final approval. XT interpreted the data, performed statistical analyses, and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Thomas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cannas, G., Fattoum, J., Raba, M. et al. Transfusion dependency at diagnosis and transfusion intensity during initial chemotherapy are associated with poorer outcomes in adult acute myeloid leukemia. Ann Hematol 94, 1797–1806 (2015). https://doi.org/10.1007/s00277-015-2456-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-015-2456-2

Keywords

Navigation