Skip to main content
Log in

Antibodies to glycosylphosphatidyl-inositol anchored proteins (GPI-AP) in antithymocyte and antilymphocyte globulin: possible role for the expansion of GPI-AP deficient cells in aplastic anemia

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Antithymocyte globulin (ATG) and antilymphocyte globulin (ALG) are currently used successfully for immunosuppressive treatment of aplastic anemia. In this study we have investigated whether commercial ATG/ALG preparations contain antibodies against glycosylphosphatidyl-inositol anchored proteins (GPI-AP), which could be responsible for emergence of GPI-deficient populations in aplastic anemia after ATG/ALG therapy. We analyzed four commercial ATG/ALG preparations by competitive binding assays using flow cytometry. Quantification was achieved by calculating the concentration of ATG/ALG required to give 50% inhibition of binding the specific fluorochrome-labeled monoclonal antibody (EC50). High concentrations of antibodies against the GPI-anchored protein CD52 were found in all preparations (Lymphoglobulin® Genzyme, Thymoglobulin® Genzyme, Atgam® Pharmacia & Upjohn, and ATG-Fresenius S Fresenius). Antibodies against the GPI-anchored protein CD48 are present in significant concentrations except in the preparation Atgam®. CD16 antibodies were found in lower concentrations. We could not detect significant concentrations of antibodies against the GPI-anchored proteins CD157 and CD14. Campath-1H, a monoclonal antibody against the GPI-anchored protein CD52, has been used as immunosuppressive tool for T-cell depletion. CD52 antibodies in ATG/ALG preparations might contribute in the same way to the immunosuppressive effects in treatment of aplastic anemia. It is known that in a substantial proportion of patients with aplastic anemia GPI-deficient cells are present in a low level at diagnosis or emerge after immunosuppressive therapy. GPI-anchored antibodies in ATG/ALG preparations might lead to a relative advantage for pre-existing GPI-deficient cells caused by an escape from the antibody-mediated attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bonnefoy-Berard N, Vincent C, Revillard JP (1991) Antibodies against functional leukocyte surface molecules in polyclonal antilymphocyte and antithymocyte globulins. Transplantation 51:669–673

    PubMed  CAS  Google Scholar 

  2. Bourdage JS, Hamlin DM (1995) Comparative polyclonal antithymocyte globulin and antilymphocyte/antilymphoblast globulin anti-CD antigen analysis by flow cytometry. Transplantation 59:1194–1200 doi:10.1097/00007890-199504270-00020

    Article  PubMed  CAS  Google Scholar 

  3. Rebellato LM, Gross U, Verbanac KM, Thomas JM (1994) A comprehensive definition of the major antibody specificities in polyclonal rabbit antithymocyte globulin. Transplantation 57:685–694 doi:10.1097/00007890-199403150-00010

    Article  PubMed  CAS  Google Scholar 

  4. Frickhofen N, Heimpel H, Kaltwasser JP, Schrezenmeier H (2003) Antithymocyte globulin with or without cyclosporin A: 11-year follow-up of a randomized trial comparing treatments of aplastic anemia. Blood 101:1236–1242 doi:10.1182/blood-2002-04-1134

    Article  PubMed  CAS  Google Scholar 

  5. Frickhofen N, Kaltwasser JP, Schrezenmeier H et al (1991) Treatment of aplastic anemia with antilymphocyte globulin and methylprednisolone with or without cyclosporine. The German Aplastic Anemia Study Group. N Engl J Med 324:1297–1304

    CAS  Google Scholar 

  6. Bacigalupo A, Brand R, Oneto R et al (2000) Treatment of acquired severe aplastic anemia: bone marrow transplantation compared with immunosuppressive therapy—The European Group for Blood and Marrow Transplantation experience. Semin Hematol 37:69–80 doi:10.1016/S0037-1963(00)90031-3

    Article  PubMed  CAS  Google Scholar 

  7. Tichelli A, Gratwohl A, Nissen C, Speck B (1994) Late clonal complications in severe aplastic anemia. Leuk Lymphoma 12:167–175 doi:10.3109/10428199409059587

    Article  PubMed  CAS  Google Scholar 

  8. Griscelli-Bennaceur A, Gluckman E, Scrobohaci ML et al (1995) Aplastic anemia and paroxysmal nocturnal hemoglobinuria: search for a pathogenetic link. Blood 85:1354–1363

    PubMed  CAS  Google Scholar 

  9. Schrezenmeier H (1995) Pathophysiology of severe aplastic anemia: prospective study on the deficiency of phosphatidylinositol glycan anchored proteins (PIG-AP) in aplastic anemia. Trends Onco-Hematology 3:30–31

    Google Scholar 

  10. Schrezenmeier H, Hertenstein B, Wagner B, Raghavachar A, Heimpel H (1995) A pathogenetic link between aplastic anemia and paroxysmal nocturnal hemoglobinuria is suggested by a high frequency of aplastic anemia patients with a deficiency of phosphatidylinositol glycan anchored proteins. Exp Hematol 23:81–87

    PubMed  CAS  Google Scholar 

  11. Schrezenmeier H, Hildebrand A, Rojewski M, Hacker H, Heimpel H, Raghavachar A (2000) Paroxysmal nocturnal haemoglobinuria: a replacement of haematopoietic tissue. Acta Haematol 103:41–48 doi:10.1159/000041003

    Article  PubMed  CAS  Google Scholar 

  12. Schubert J, Vogt HG, Zielinska-Skowronek M et al (1994) Development of the glycosylphosphatitylinositol-anchoring defect characteristic for paroxysmal nocturnal hemoglobinuria in patients with aplastic anemia. Blood 83:2323–2328

    PubMed  CAS  Google Scholar 

  13. Mortazavi Y, Merk B, McIntosh J, Marsh JC, Schrezenmeier H, Rutherford TR (2003) The spectrum of PIG-A gene mutations in aplastic anemia/paroxysmal nocturnal hemoglobinuria (AA/PNH): a high incidence of multiple mutations and evidence of a mutational hot spot. Blood 101:2833–2841 doi:10.1182/blood-2002-07-2095

    Article  PubMed  CAS  Google Scholar 

  14. Garland RJ, Groves SJ, Diamanti P et al (2005) Early emergence of PNH-like T cells after allogeneic stem cell transplants utilising CAMPATH-1H for T cell depletion. Bone Marrow Transplant 36:237–244 doi:10.1038/sj.bmt.1705049

    Article  PubMed  CAS  Google Scholar 

  15. Hertenstein B, Wagner B, Bunjes D et al (1995) Emergence of CD52-, phosphatidylinositolglycan-anchor-deficient T lymphocytes after in vivo application of Campath-1H for refractory B-cell non-Hodgkin lymphoma. Blood 86:1487–1492

    PubMed  CAS  Google Scholar 

  16. Rowan W, Tite J, Topley P, Brett SJ (1998) Cross-linking of the CAMPATH-1 antigen (CD52) mediates growth inhibition in human B- and T-lymphoma cell lines, and subsequent emergence of CD52-deficient cells. Immunology 95:427–436 doi:10.1046/j.1365-2567.1998.00615.x

    Article  PubMed  CAS  Google Scholar 

  17. Rameshwar P, Gascon P (1992) Release of interleukin-1 and interleukin-6 from human monocytes by antithymocyte globulin: requirement for de novo synthesis. Blood 80:2531–2538

    PubMed  CAS  Google Scholar 

  18. Taniguchi Y, Frickhofen N, Raghavachar A, Digel W, Heimpel H (1990) Antilymphocyte immunoglobulins stimulate peripheral blood lymphocytes to proliferate and release lymphokines. Eur J Haematol 44:244–251

    Article  PubMed  CAS  Google Scholar 

  19. Lopez M, Clarkson MR, Albin M, Sayegh MH, Najafian N (2006) A novel mechanism of action for anti-thymocyte globulin: induction of CD4+CD25+Foxp3+ regulatory T cells. J Am Soc Nephrol 17:2844–2853 doi:10.1681/ASN.2006050422

    Article  PubMed  CAS  Google Scholar 

  20. Greco B, Bielory L, Stephany D et al (1983) Antithymocyte globulin reacts with many normal human cell types. Blood 62:1047–1054

    PubMed  CAS  Google Scholar 

  21. Killick SB, Marsh JC, Gordon-Smith EC, Sorlin L, Gibson FM (2000) Effects of antithymocyte globulin on bone marrow CD34+ cells in aplastic anaemia and myelodysplasia. Br J Haematol 108:582–591 doi:10.1046/j.1365-2141.2000.01853.x

    Article  PubMed  CAS  Google Scholar 

  22. Bonnefoy-Berard N, Genestier L, Flacher M et al (1994) Apoptosis induced by polyclonal antilymphocyte globulins in human B-cell lines. Blood 83:1051–1059

    PubMed  CAS  Google Scholar 

  23. Genestier L, Fournel S, Flacher M, Assossou O, Revillard JP, Bonnefoy-Berard N (1998) Induction of Fas (Apo-1, CD95)-mediated apoptosis of activated lymphocytes by polyclonal antithymocyte globulins. Blood 91:2360–2368

    PubMed  CAS  Google Scholar 

  24. Schrezenmeier H, Mönich M, Rojewski M, Thiel E (2001) Effects of antithymocyte globulin in myeloid cells: induction of apoptosis, activation of caspases and inhibition of proliferation rate. Onkologie 24:53

    Google Scholar 

  25. Zand MS, Vo T, Huggins J et al (2005) Polyclonal rabbit antithymocyte globulin triggers B-cell and plasma cell apoptosis by multiple pathways. Transplantation 79:1507–1515 doi:10.1097/01.TP.0000164159.20075.16

    Article  PubMed  CAS  Google Scholar 

  26. Nakao S, Sugimori C, Yamazaki H (2006) Clinical significance of a small population of paroxysmal nocturnal hemoglobinuria-type cells in the management of bone marrow failure. Int J Hematol 84:118–122 doi:10.1532/IJH97.06077

    Article  PubMed  Google Scholar 

  27. Sugimori C, Chuhjo T, Feng X et al (2006) Minor population of CD55-CD59- blood cells predicts response to immunosuppressive therapy and prognosis in patients with aplastic anemia. Blood 107:1308–1314 doi:10.1182/blood-2005-06-2485

    Article  PubMed  CAS  Google Scholar 

  28. Wang H, Chuhjo T, Yasue S, Omine M, Nakao S (2002) Clinical significance of a minor population of paroxysmal nocturnal hemoglobinuria-type cells in bone marrow failure syndrome. Blood 100:3897–3902 doi:10.1182/blood-2002-03-0799

    Article  PubMed  CAS  Google Scholar 

  29. Smith AG, O’Reilly RJ, Hansen JA, Martin PJ (1985) Specific antibody-blocking activities in antilymphocyte globulin as correlates of efficacy for the treatment of aplastic anemia. Blood 66:721–723

    PubMed  CAS  Google Scholar 

  30. Killick SB, Cox CV, Marsh JC, Gordon-Smith EC, Gibson FM (2000) Mechanisms of bone marrow progenitor cell apoptosis in aplastic anaemia and the effect of anti-thymocyte globulin: examination of the role of the Fas-Fas-L interaction. Br J Haematol 111:1164–1169 doi:10.1046/j.1365-2141.2000.02485.x

    Article  PubMed  CAS  Google Scholar 

  31. Maciejewski JP, Selleri C, Sato T, Anderson S, Young NS (1995) Increased expression of Fas antigen on bone marrow CD34+ cells of patients with aplastic anaemia. Br J Haematol 91:245–252 doi:10.1111/j.1365-2141.1995.tb05277.x

    Article  PubMed  CAS  Google Scholar 

  32. Huang AT, Mold NG, Zhang SF (1987) Antithymocyte globulin stimulates human hematopoietic progenitor cells. Proc Natl Acad Sci U S A 84:5942–5946 doi:10.1073/pnas.84.16.5942

    Article  PubMed  CAS  Google Scholar 

  33. Tong J, Bacigalupo A, Piaggio G, Figari O, Sogno G, Marmont A (1991) In vitro response of T cells from aplastic anemia patients to antilymphocyte globulin and phytohemagglutinin: colony-stimulating activity and lymphokine production. Exp Hematol 19:312–316

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus T. Rojewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breitinger, H.H., Rojewski, M.T. & Schrezenmeier, H. Antibodies to glycosylphosphatidyl-inositol anchored proteins (GPI-AP) in antithymocyte and antilymphocyte globulin: possible role for the expansion of GPI-AP deficient cells in aplastic anemia. Ann Hematol 88, 889–895 (2009). https://doi.org/10.1007/s00277-008-0688-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-008-0688-0

Keywords

Navigation