Skip to main content
Log in

Architecture of the cancellous bone in human proximal tibia based on P45 sectional plastinated specimens

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Purpose

To reveal differences in the pattern of trabecular architecture in the epiphysis and metaphysis of the proximal tibia.

Methods

The trabecular architecture of the proximal tibia was observed in 27 P45 plastinated knee specimens.

Results

In the medial and lateral condyles, under the articular cartilage surrounded by the medial or lateral meniscus, the cancellous bone is formed by thick and dense trabecular bands, which run longitudinally in the epiphysis and then pass through the epiphyseal line to terminate on the slanted cortex of the metaphysis. In the intercondylar eminence, the trabeculae are arranged basically in a network. In the central portion of the tibial metaphysis, cancellous bone consists of fine arcuate trabeculae, which extend to the anterior and posterior cortices, respectively. These trabeculae are intersected sparsely and form trusses over the medullary cavity. Near the areas of attachment of the iliotibial tract, tibial collateral ligament, anterior and posterior cruciate ligaments, and patellar ligament, the cancellous bone is locally reinforced with patchy trabeculae, dense radiating trabeculae, or two orthotropic trabecular bands.

Conclusion

This study provides further accurate anatomical information on the trabeculae of the proximal tibia. The soft structures of knee joint, including the articular cartilage, menisci, and ligaments, and the slanted cortices of the metaphysis are important landmarks for the location of different arrangements of the cancellous architecture. The present results are beneficial for clinical diagnosis and treatment of pathologies of the knee joint, or the establishment of a finite element analysis model of the knee joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abel R, Macho GA (2011) Ontogenetic changes in the internal and external morphology of the ilium in modern humans. J Anat 218(3):324–335. https://doi.org/10.1111/j.1469-7580.2011.01342.x

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ariyachaipanich A, Kaya E, Statum S et al (2020) MR imaging pattern of tibial subchondral bone structure: considerations of meniscal coverage and integrity. Skelet Radiol 49(12):2019–2027. https://doi.org/10.1007/s00256-020-03517-6

    Article  Google Scholar 

  3. Carter DR, Orr TE, Fyhrie DP (1989) Relationships between loading history and femoral cancellous bone architecture. J Biomech 22(3):231–244. https://doi.org/10.1016/0021-9290(89)90091-2

    Article  CAS  PubMed  Google Scholar 

  4. Chappard C, Peyrin F, Bonnassie A et al (2006) Subchondral bone micro-architectural alterations in osteoarthritis: a synchrotron micro-computed tomography study. Osteoarthritis Cartilage 14(3):215–223. https://doi.org/10.1016/j.joca.2005.09.008

    Article  CAS  PubMed  Google Scholar 

  5. Fontenot PB, Diaz M, Stoops K et al (2019) Supplementation of lateral locked plating for distal femur fractures: a biomechanical study. J Orthop Trauma 33(12):642–648. https://doi.org/10.1097/BOT.0000000000001591

    Article  PubMed  Google Scholar 

  6. Geraldes DM, Modenese L, Phillips AT (2016) Consideration of multiple load cases is critical in modelling orthotropic bone adaptation in the femur. Biomech Model Mechanobiol 15(5):1029–1042. https://doi.org/10.1007/s10237-015-0740-7

    Article  PubMed  Google Scholar 

  7. Hammer A (2015) The paradox of Wolff’s theories. Irish J Med Sci 184(1):13–22. https://doi.org/10.1007/s11845-014-1070-y

    Article  CAS  PubMed  Google Scholar 

  8. Jiang WB, Li C, Sun SZ et al (2020) P45 technology reveals bow-and-arrow sign in human ankle. Chin Med J 133(11):1373–1374. https://doi.org/10.1097/CM9.0000000000000729

    Article  PubMed  PubMed Central  Google Scholar 

  9. Joffre T, Isaksson P, Procter P et al (2017) Trabecular deformations during screw pull-out: a micro-CT study of lapine bone. Biomech Model Mechanobiol 16(4):1349–1359. https://doi.org/10.1007/s10237-017-0891-9

    Article  PubMed  PubMed Central  Google Scholar 

  10. Keaveny TM, Morgan EF, Niebur GL et al (2001) Biomechanics of trabecular bone. Annu Rev Biomed Eng 3:307–333. https://doi.org/10.1146/annurev.bioeng.3.1.307

    Article  CAS  PubMed  Google Scholar 

  11. Kivell TL (2016) A review of trabecular bone functional adaptation: what have we learned from trabecular analyses in extant hominoids and what can we apply to fossils? J Anat 228(4):569–594. https://doi.org/10.1111/joa.12446

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kraiger M, Martirosian P, Opriessnig P et al (2012) A fully automated trabecular bone structural analysis tool based on T2* -weighted magnetic resonance imaging. Comput Med Imaging Graph 36(2):85–94. https://doi.org/10.1016/j.compmedimag.2011.07.006

    Article  PubMed  Google Scholar 

  13. Krause M, Hubert J, Deymann S et al (2018) Bone microarchitecture of the tibial plateau in skeletal health and osteoporosis. Knee 25(4):559–567. https://doi.org/10.1016/j.knee.2018.04.012

    Article  PubMed  Google Scholar 

  14. Lavecchia CE, Espino DM, Moerman KM et al (2018) Lumbar model generator: a tool for the automated generation of a parametric scalable model of the lumbar spine. J R Soc Interface 15(138):20170829. https://doi.org/10.1098/rsif.2017.0829

    Article  PubMed  PubMed Central  Google Scholar 

  15. Michalak GJ, Walker R, Boyd SK (2019) Concurrent assessment of cartilage morphology and bone microarchitecture in the human knee using contrast-enhanced HR-pQCT imaging. J Clin Densitom 22(1):74–85. https://doi.org/10.1016/j.jocd.2018.07.002

    Article  PubMed  Google Scholar 

  16. Nazemi SM, Amini M, Kontulainen SA et al (2017) Optimizing finite element predictions of local subchondral bone structural stiffness using neural network-derived density-modulus relationships for proximal tibial subchondral cortical and trabecular bone. Clin Biomech (Bristol, Avon) 41:1–8. https://doi.org/10.1016/j.clinbiomech.2016.10.012

    Article  Google Scholar 

  17. Nazemi SM, Kalajahi SMH, Cooper DML et al (2017) Accounting for spatial variation of trabecular anisotropy with subject-specific finite element modeling moderately improves predictions of local subchondral bone stiffness at the proximal tibia. J Biomech 59:101–108. https://doi.org/10.1016/j.jbiomech.2017.05.018

    Article  PubMed  Google Scholar 

  18. Parr WC, Chamoli U, Jones A et al (2013) Finite element micro-modelling of a human ankle bone reveals the importance of the trabecular network to mechanical performance: new methods for the generation and comparison of 3D models. J Biomech 46(1):200205

    Article  Google Scholar 

  19. Sampath SA, Lewis S, Fosco M et al (2015) Trabecular orientation in the human femur and tibia and the relationship with lower-limb alignment for patients with osteoarthritis of the knee. J Biomech 48(6):1214–1218. https://doi.org/10.1016/j.jbiomech.2015.01.028

    Article  PubMed  Google Scholar 

  20. Sui HJ, Henry RW (2007) Polyester plastination of biological tissue: Hoffen P45 technique. J Int Soc Plastination 22:78–81

    Google Scholar 

  21. Takechi H (1977) Trabecular architecture of the knee joint. Acta Orthop Scand 48(6):673–681. https://doi.org/10.3109/17453677708994816

    Article  CAS  PubMed  Google Scholar 

  22. Thomsen JS, Jensen MV, Niklassen AS et al (2015) Age-related changes in vertebral and iliac crest 3D bone microstructure–differences and similarities. Osteoporos Int 26(1):219–228. https://doi.org/10.1007/s00198-014-2851-x

    Article  CAS  PubMed  Google Scholar 

  23. Toumi H, Larguech G, Filaire E et al (2012) Regional variations in human patellar trabecular architecture and the structure of the quadriceps enthesis: a cadaveric study. J Anat 220(6):632–637. https://doi.org/10.1111/j.1469-7580.2012.01500.x

    Article  PubMed  PubMed Central  Google Scholar 

  24. Vaienti E, Scita G, Ceccarelli F et al (2017) Understanding the human knee and its relationship to total knee replacement. Acta Biomed 88(2S):6–16

    PubMed  PubMed Central  Google Scholar 

  25. von Meyer GH (2011) The classic: the architecture of the trabecular bone (tenth contribution on the mechanics of the human skeletal framework). Clin Orthop Relat Res 469(11):3079–3084

    Article  Google Scholar 

  26. Walker PS, Arno S, Bell C et al (2015) Function of the medial meniscus in force transmission and stability. J Biomech 48(8):1383–1388. https://doi.org/10.1016/j.jbiomech.2015.02.055

    Article  PubMed  Google Scholar 

  27. Zhao F, Kirby M, Roy A et al (2018) Commonality in the microarchitecture of trabecular bone: a preliminary study. Bone 111:59–70. https://doi.org/10.1016/j.bone.2018.03.003

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Philip Adds from St George’s, University of London for his polishing the language.

Funding

This work was supported by the Key R & D projects in Liaoning Province (2020JH2/10500004).

Author information

Authors and Affiliations

Authors

Contributions

CY-Y: data analysis; JW-B: data analysis; LC: data analysis; ST-W: data analysis; SH-J: project development, editing; SS-Z: manuscript writing, editing; TW: data analysis; XF: data collection or management; XQ: data collection or management; YS-B: project development, editing; ZJ-X: data analysis.

Corresponding authors

Correspondence to Sheng-Bo Yu or Hong-Jin Sui.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work and there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Ethical approval and consent to participate

Twenty-seven adult knee joint specimens were from Dalian Medical University. All were donated to Dalian Medical University for anatomical teaching and research. The Ethics Committee of the Dalian Medical University approved this retrospective study (Dalian, China). All experiments were carried out according to the guiding principles and regulations of Dalian Medical University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, SZ., Jiang, WB., Song, TW. et al. Architecture of the cancellous bone in human proximal tibia based on P45 sectional plastinated specimens. Surg Radiol Anat 43, 2055–2069 (2021). https://doi.org/10.1007/s00276-021-02826-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-021-02826-2

Keywords

Navigation