Skip to main content

Advertisement

Log in

Posterior tibial slope of the knee measured on X-rays in a Turkish population

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Purpose

Posterior tibial inclination of the knee joint should be considered during anterior cruciate ligament reconstruction and total knee replacement surgery. This inclination is called the posterior tibial slope (PTS) angle. The PTS differs among populations and the aim of this study was to determine the mean PTS in a Turkish population.

Methods

PTS was measured retrospectively on lateral knee X-rays (n = 1024). The angle between the line connecting the anterior and posterior points of the lateral tibial plateau and the tibial longitudinal axis was taken as the PTS angle. Intra- and inter-observer agreement regarding the measurements on 20 X-rays were checked.

Results

The mean PTS angle for the entire cohort was 8.36 ± 3.3° (range: 2.1–18.7°); it was 8.57 ± 3.4° (range: 2.3–17.4°) in men and 8.16 ± 3.2° (range: 2.1–18.7°) in women. Although no significant correlation was detected between PTS and age, PTS was higher in men than in women.

Conclusion

The increasing number of total knee replacement surgeries has increased the need for studies on implant mismatch. In this study, reference PTS values were determined for a Turkish population. It may be beneficial to use patient-specific implants in some cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bai B, Kummer FJ, Sala DA, Koval KJ, Wolinsky PR (2001) Effect of articular step-off and meniscectomy on joint alignment and contact pressures for fractures of the lateral tibial plateau. J Orthop Trauma 15:101–106. https://doi.org/10.1097/00005131-200102000-00005

    Article  CAS  PubMed  Google Scholar 

  2. Bass WM (2005) Human osteology: a laboratory and field manual. Missouri Archeological Society, Columbia

    Google Scholar 

  3. Bisicchia S, Scordo GM, Prins J, Tudisco C (2017) Do ethnicity and gender influence posterior tibial slope? J Orthop Traumatol 18(4):319–324. https://doi.org/10.1007/s10195-017-0443-1

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF (2006) The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy 22:894–899. https://doi.org/10.1016/j.arthro.2006.04.098

    Article  PubMed  Google Scholar 

  5. Brazier J, Migaud H, Gougeon F, Cotton A, Fontaine C, Duquwnnoy A (2009) Evaluation of methods for radiographic measurement of the tibial slope: a study of 83 healthy knees. Rev Chir Orthop Reparatrice Appar Mot 82:195–200

    Google Scholar 

  6. Chiu KY, Zhang SD, Zhang GH (2000) Posterior slope of tibial plateau in Chinese. J Arthroplast 15:224–227. https://doi.org/10.1016/S0883-5403(00)90330-9

    Article  CAS  Google Scholar 

  7. Cockshott WP, Park WM (1983) Observer variation in skeletal radiology. Skeletal Radiol 10:86–90. https://doi.org/10.1007/bf00360790

    Article  CAS  PubMed  Google Scholar 

  8. Cullu E, Aydoğdu S, Alparslan B, Sur H (2005) Tibial slope changes following dome-type high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 13(1):38–43. https://doi.org/10.1007/s00167-004-0501-0

    Article  PubMed  Google Scholar 

  9. Dalrymple NC, Prasad SR, Freckleton MW, Chintapalli KN (2005) Informatics in radiology (infoRAD): introduction to the language of three-dimensional imaging with multidetector CT. Radiographics 25(5):1409–1428. https://doi.org/10.1148/rg.255055044

    Article  PubMed  Google Scholar 

  10. Dare DM, Fabricant PD, McCarthy MM, Rebolledo BJ, Green DW, Cordasco FA, Jones KJ (2015) Increased lateral tibial slope is a risk factor for pediatric anterior cruciate ligament injury: an MRI-based case-control study of 152 patients. Am J Sports Med 43:1632–1639. https://doi.org/10.1177/0363546515579182

    Article  PubMed  Google Scholar 

  11. De Boer JJ, Blankevoort L, Kingma I, Vorster W (2009) In vitro study of inter-individual variation in posterior slope in the knee joint. Clin Biomech (Bristol, Avon) 24:488–492. https://doi.org/10.1016/j.clinbiomech.2009.03.008

    Article  Google Scholar 

  12. Dejour H, Bonnin M (1994) Tibial translation after anterior cruciate ligament rupture: two radiological tests compared. J Bone Jt Surg Br 76:745–749. https://doi.org/10.1302/0301-620X.76B5.8083263

    Article  CAS  Google Scholar 

  13. Didia BC, Jaja BNR (2009) Posterior slope of tibial plateau in adult Nigerian subjects. Int J Morphol 27(1):201–204. https://doi.org/10.4067/S0717-95022009000100034

    Article  Google Scholar 

  14. Fan L, Xu T, Li X, Zan P, Li G (2017) Morphologic features of the distal femur and tibia plateau in Southeastern Chinese population: a cross-sectional study. Medicine 96:1–5. https://doi.org/10.1097/MD.0000000000008524

    Article  Google Scholar 

  15. Faschingbauer M, Sgroi M, Juchems M, Reichel H, Kappe T (2014) Can the tibial slope be measured on lateral knee radiographs? Knee Surg Sports Traumatol Arthrosc 22:3163–3167. https://doi.org/10.1007/s00167-014-2864-1

    Article  CAS  PubMed  Google Scholar 

  16. FitzGerald R (2005) Radiological error: analysis, standard setting, targeted instruction and teamworking. Eur Radiol 15(8):1760–1767. https://doi.org/10.1007/s00330-005-2662-8

    Article  PubMed  Google Scholar 

  17. France DL (1998) Observations and metric analysis of sex in the skeleton. In: Reichs KJ (ed) Forensic osteology. Advances in identification of human remains, 2nd edn, Charles C. Thomas, Springfield.

  18. Giffin JR, Vogrin TM, Zantop T, Woo SL, Harner CD (2004) Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 32:376–382. https://doi.org/10.1177/0363546503258880

    Article  PubMed  Google Scholar 

  19. Grabherr S, Cooper C, Ulrich-Bochsler S, Uldin T, Ross S, Oesterhelweg L, Bolliger S, Christe A, Schnyder P, Mangin MJ (2008) Thali, estimation of sex and age of ‘‘virtual skeletons”—a feasibility study. Eur Radiol 19:419–429. https://doi.org/10.1007/s00330-008-1155-y

    Article  PubMed  Google Scholar 

  20. Gulhan O, Harrison K, Kiris A (2015) A new computer-tomography-based method of sex estimation: development of Turkish population-specific standards. Forensic Sci Int 255:2–8. https://doi.org/10.1016/j.forsciint.2015.07.015

    Article  PubMed  Google Scholar 

  21. Haddad B, Konan S, Mannan K, Scott G (2012) Evaluation of the posterior tibial slope on MR images in different population groups using the tibial proximal anatomical axis. Acta Orthop Belg 78:757–763

    PubMed  Google Scholar 

  22. Han H, Oh S, Chang CB, Kang SB (2016) Anthropometric difference of the knee on MRI according to gender and age groups. Surg Radiol Anat 38:203–211. https://doi.org/10.1007/s00276-015-1536-2

    Article  PubMed  Google Scholar 

  23. Han HS, Chang CB, Seong SC, Lee S, Lee MC (2008) Evaluation of anatomic references for tibial sagittal alignment in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 16:373–377. https://doi.org/10.1007/s00167-008-0486-1

    Article  PubMed  Google Scholar 

  24. Hashemi J, Chandrashekar N, Gill B, Beynnon BD, Slauterbeck JR, Schutt RC Jr, Mansouri H, Dabezies E (2008) The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Jt Surg Am 90(12):2724–2734. https://doi.org/10.2106/JBJS.G.01358

    Article  Google Scholar 

  25. Hernigou P, Deschamps G (2004) Posterior slope of the tibial implant and the outcome of unicompartmental knee arthroplasty. J Bone joint Surg Am 86:506–511. https://doi.org/10.2106/00004623-200403000-00007

    Article  PubMed  Google Scholar 

  26. Hernigou P, Goutallier D (1990) Subchondral bone wear of the tibial plateau in femorotibial knee osteoarthritis. Radiologic aspects in the profile incidence. Clinical, anatomical correlations and consequences. Rev Rhum Mal Osteoartic 57:67–72

    CAS  PubMed  Google Scholar 

  27. Ho WP, Cheng CK, Liau JJ (2006) Morphometrical measurements of resected surface of femurs in Chinese knees: correlation to the sizing of current femoral implants. Knee 13(1):12–14. https://doi.org/10.1016/j.knee.2005.05.002

    Article  PubMed  Google Scholar 

  28. Hofmann AA, Bachus KN, Wyatt RW (1991) Effect of the tibial cut on subsidence following total knee arthroplasty. Clin Orthop Relat Res 269:63–69. https://doi.org/10.1097/00003086-199108000-00011

    Article  Google Scholar 

  29. Hohmann E, Bryant A, Reaburn P, Tetsworth K (2011) Is there a correlation between posterior tibial slope and non-contact anterior cruciate ligament injuries? Knee Surg Sports Traumatol Arthrosc 19(Suppl 1):S109–S114. https://doi.org/10.1007/s00167-011-1547-4

    Article  PubMed  Google Scholar 

  30. Hudek R, Schmutz S, Regenfelder F, Fuchs B, Koch PP (2009) Novel measurement technique of the tibial slope on conventional MRI. Clin Orthop Relat Res 467(8):2066–2072. https://doi.org/10.1007/s11999-009-0711-3

    Article  PubMed  PubMed Central  Google Scholar 

  31. Iscan MY, Miller-Shaivitz P (1986) Sexual dimorphism in the femur and tibia. In: Reichs KJ (ed) Forensic osteology: advances in the identification of human remains, Thomas C.C., Springfield, pp 102–111

  32. Julliard R, Genin P, Weil G, Palmkrantz P (1993) The median functional slope of the tibia: principle, technique of measurement, value, interest. Rev Chir Orthop Reparatrice Appar Mot 79:625–634

    CAS  PubMed  Google Scholar 

  33. Kang KT, Koh YG, Son J, Kwon OR, Lee JS, Kwon SK (2018) Influence of increased posterior tibial slope in total knee arthroplasty on knee joint biomechanics: a computational simulation study. J Arthroplasty 33:572–579. https://doi.org/10.1016/j.arth.2017.09.025

    Article  PubMed  Google Scholar 

  34. Khattak MJ, Umer M, Davis ET, Habib M, Ahmed M (2010) Lower-limb alignment and posterior tibial slope in Pakistanis: a radiographic study. J Orthop Surg (Hong Kong) 18(1):22–25. https://doi.org/10.1177/230949901001800105

    Article  Google Scholar 

  35. Kieser JA, Moggi-Cecchi J, Groeneveld HT (1992) Sex allocation of skeletal material by analysis of the proximal tibia. Forensic Sci Int 56(1):29–36. https://doi.org/10.1016/0379-0738(92)90143-k

    Article  CAS  PubMed  Google Scholar 

  36. Kim TK, Philips M, Bhandari M, Watson J, Malhotra R (2017) What differences in morphologic features of the knee exist among patients of various races? A systematic review. Clin Orthop Relat Res 475:170–182. https://doi.org/10.1007/s11999-016-5097-4

    Article  CAS  PubMed  Google Scholar 

  37. Kızılgöz V, Sivrioğlu AK, Ulusoy GR, Yıldız K, Aydın H, Çetin T (2019) Posterior tibial slope measurement on lateral knee radiographs as a risk factor of anterior cruciate ligament injury: a cross-sectional study. Radiography (Lond) 25(1):33–38. https://doi.org/10.1016/j.radi.2018.07.007

    Article  Google Scholar 

  38. Krogman WM, Iscan MY (1986) The human skeleton in forensic medicine. Charles C. Thomas, Springfield

    Google Scholar 

  39. Kuwano T, Urabe K, Miura H, Nagamine R, Matsuda S, Satomura M, Sasaki T, Sakai S, Honda H, Iwamoto Y (2005) Importance of the lateral anatomic tibial slope as a guide to the tibial cut in total knee arthroplasty in Japanese patients. J Orthop Sci 10(1):42–47. https://doi.org/10.1007/s00776-004-0855-7

    Article  PubMed  Google Scholar 

  40. Lotke PA, Ecker ML (1977) Influence of positioning of prosthesis in total knee replacement. J Bone Jt Surg Am 59:77–79

    Article  CAS  Google Scholar 

  41. Misir A, Yildiz KI, Kizkapan TB (2019) Wider femoral and mediolaterally narrower tibial components are required for total knee arthroplasty in Turkish patients. Knee Surg Sports Traumatol Arthrosc 27(7):2155–2166. https://doi.org/10.1007/s00167-019-05448-9

    Article  PubMed  Google Scholar 

  42. Mohanty SS, Rao NN, Dash KK, Bhosale SK (2013) Correlation of posterior tibial slope with metaphysio-diaphyseal angle in total knee arthroplasty: a radiological study. Indian J Orthop 47(1):67–71. https://doi.org/10.4103/0019-5413.106910

    Article  PubMed  PubMed Central  Google Scholar 

  43. Noyes FR, Goebel SX, West J (2005) Opening wedge tibial osteotomy: the 2-triangle method to correct axial alignment and tibial slope. Am J Sports Med 33:378–387. https://doi.org/10.1177/0363546504269034

    Article  PubMed  Google Scholar 

  44. Oswald MH, Jakob RP, Schneider E, Hoogewoud HM (1993) Radiological analysis of normal axis alignment of femur and tibia in view of total knee arthroplasty. J Arthroplast 8:419. https://doi.org/10.1016/s0883-5403(06)80042-2

    Article  CAS  Google Scholar 

  45. Pinto A, Caranci F, Romano L, Carrafiello G, Fonio P, Brunese L (2012) Learning from errors in radiology: a comprehensive review. Semin Ultrasound CT MR 33(4):379–382. https://doi.org/10.1053/j.sult.2012.01.015

    Article  PubMed  Google Scholar 

  46. Singerman R, Dean JC, Pagan HD, Goldberg VM (1996) Decreased posterior tibial slope increases strain in the posterior cruciate ligament following total knee arthroplasty. J Arthroplasty 11:99–103. https://doi.org/10.1016/S0883-5403(96)80167-7

    Article  CAS  PubMed  Google Scholar 

  47. Smith HC, Vacek P, Johnson RJ, Slauterbeck JR, Hashemi J, Shultz S, Beynnon BD (2012) Risk factors for anterior cruciate ligament injury: a review of the literature. Part 1: neuromuscular and anatomic risk. Sports Health 4(1):69–78. https://doi.org/10.1177/1941738111428281

    Article  PubMed  PubMed Central  Google Scholar 

  48. Steyn M, Iscan MY (1997) Sex determination from the femur and tibia in South African whites. Forensic Sci Int 90:111–119. https://doi.org/10.1016/s0379-0738(97)00156-4

    Article  CAS  PubMed  Google Scholar 

  49. Stijak L, Herzog RF, Schai P (2008) Is there an influence of the tibial slope of the lateral condyle on the ACL lesion? A case-control study. Knee Surg Sports Traumatol Arthrosc 16:112–117

    Article  PubMed  Google Scholar 

  50. Stulberg SD (2003) How accurate is current TKR instrumentation? Clin Orthop Relat Res 416:177–184. https://doi.org/10.1007/s00167-007-0438-1

    Article  Google Scholar 

  51. Thali MJ, Braun M, Buck U, Aghayev E, Jackowski C, Vock P, Sonnenschein M, Dirnhofer R (2005) VIRTOPSY—scientific documentation, reconstruction and animation in forensic: individual and real 3D data based geo-metric approach including optical body/object surface and radiological CT/MRI scanning. J Forensic Sci 50:428–442. https://doi.org/10.1520/JFS2004290

    Article  PubMed  Google Scholar 

  52. Thilak J, George M (2016) Patient—implant dimension mismatch in total knee arthroplasty: is it worth worrying? An Indian scenario. Indian J Orthop 50:512–517. https://doi.org/10.4103/0019-5413.189618

    Article  PubMed  PubMed Central  Google Scholar 

  53. Todd MS, Lalliss S, Garcia ES, DeBerardino TM, Cameron KL (2010) The relationship between posterior tibial slope and anterior cruciate ligament injuries. Am J Sports Med 38:63–67. https://doi.org/10.1177/0363546509343198

    Article  PubMed  Google Scholar 

  54. Utzschneider S, Goettinger M, Weber P, Horng A, Glaser C, Jansson V, Müller PE (2011) Development and validation of a new method for the radiologic measurement of the tibial slope. Knee Surg Sports Traumatol Arthrosc 19(10):1643–1648. https://doi.org/10.1007/s00167-011-1414-3

    Article  CAS  PubMed  Google Scholar 

  55. Vaidya SV, Ranawat CS, Aroojis A, Laud NS (2000) Anthropometric measurements to design total knee prostheses for the Indian population. J Arthroplasty 15:79–85. https://doi.org/10.1016/s0883-5403(00)91285-3

    Article  CAS  PubMed  Google Scholar 

  56. Waelchli B, Romero J (2001) Dislocation of the polyethylene inlay due to anterior tibial slope in revision total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 9:296–298. https://doi.org/10.1007/s001670100203

    Article  CAS  PubMed  Google Scholar 

  57. Wang YL, Yang T, Zeng C, Wei J, Xie DX, Yang YH, Long HZ, Xu B, Qian YX, Jiang SD, Lei GH (2017) Association between tibial plateau slopes and anterior cruciate ligament injury: a meta-analysis. Arthroscopy 33(6):1248–1259.e4. https://doi.org/10.1016/j.arthro.2017.01.015

    Article  PubMed  Google Scholar 

  58. Weinberg DS, Williamson DF, Gebhart JJ, Knapik DM, Voos JE (2017) Differences in medial and lateral posterior tibial slope: an osteological review of 1090 tibiae comparing age, sex, and race. Am J Sports Med 45(1):106–113. https://doi.org/10.1177/0363546516662449

    Article  PubMed  Google Scholar 

  59. Yoga R, Sivapathasundaram N, Suresh C (2009) Posterior slope of the tibia plateau in Malaysian patients undergoing total knee replacement. Malays Orthop J. https://doi.org/10.5704/MOJ.0905.015

    Article  Google Scholar 

  60. Yoo JH, Chang CB, Shin KS, Seong SC, Kim TK (2008) Anatomical references to assess the posterior tibial slope in total knee arthroplasty: a comparison of 5 anatomical axes. J Arthroplasty 23:586–592. https://doi.org/10.1016/j.arth.2007.05.006

    Article  PubMed  Google Scholar 

  61. Yue B, Varadarajan KM, Ai S, Tang T, Rubash HE, Li G (2011) Differences of knee anthropometry between Chinese and white men and women. J Arthroplasty 26(1):124–130. https://doi.org/10.1016/j.arth.2009.11.020

    Article  PubMed  Google Scholar 

  62. Zelisko JA, Noble HB, Porter M (1982) A comparison of men’s and women’s professional basketball injuries. Am J Sports Med 10:297–299. https://doi.org/10.1177/036354658201000507

    Article  CAS  PubMed  Google Scholar 

  63. Zeng C, Gao SG, Wei J, Yang TB, Cheng L, Luo W, Tu M, Xie Q, Hu Z, Liu PF, Li H, Yang T, Zhou B, Lei GH (2013) The influence of the intercondylar notch dimensions on injury of the anterior cruciate ligament: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 21:804–815. https://doi.org/10.1007/s00167-012-2166-4

    Article  PubMed  Google Scholar 

  64. Zhang Y, Wang J, Xiao J, Zhao L, Li ZH, Yan G, Shi ZJ (2014) Measurement and comparison of tibial posterior slope angle in different methods based on three-dimensional reconstruction. Knee 21(3):694–698. https://doi.org/10.1016/j.knee.01.008

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mrs. Filiz Olmez Eltez for her technical support with this study. The English in this document has been checked by at least two professional editors, both native speakers of English.

Funding

The author(s) received no specific funding for this study.

Author information

Authors and Affiliations

Authors

Contributions

IEK: Protocol development, Data analysis, Manuscript writing/editing. YT: Data collection or management. CDB: Data analysis, manuscript editing. VZ: Data analysis, manuscript editing. AE: Data analysis, manuscript editing. AR: Data collection or management, manuscript editing. OE: Protocol development, data analysis, manuscript writing/editing,

Corresponding author

Correspondence to Ismail Eralp Kacmaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Research involving human participants and/or animals.

This article does not contain any studies with human participants or animals performed by any authors.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This study protocol was approved by the İzmir Tepecik Training and Research Hospital Clinical Research Ethics Committee (No: 2019/ 16–9).

Informed consent

For this type of study, formal consent was not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kacmaz, I.E., Topkaya, Y., Basa, C.D. et al. Posterior tibial slope of the knee measured on X-rays in a Turkish population. Surg Radiol Anat 42, 673–679 (2020). https://doi.org/10.1007/s00276-020-02430-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-020-02430-w

Keywords

Navigation