Skip to main content
Log in

Mineralisation and mechanical strength of the subchondral bone plate of the inferior tibial facies

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Background

The implantation of total ankle prosthesis is one of the most challenging operations in orthopaedic surgery. The main problem that surgeons face is the fixation of the total ankle prosthesis on the tibial side. The subchondral bone plate of the distal tibia is considered the strongest region on the inferior tibial facies. Based on information about the mineralisation of the subchondral bone plate, conclusions can be made concerning the mechanical stress, age-related changes, post-surgical biomechanical situations and regions of fixation. The aim of this study was to determine the correlation between the mineralisation of the subchondral bone plate and the topical mechanical strength.

Methods

By means of CT-osteoabsorptiometry, the distribution of mineralisation in the subchondral bone plate in 18 distal Tibiae was investigated. After removal of the cartilage of the facies articularis inferior, the mechanical strength of the joint surface was measured with an indentation apparatus. The linear regression of the mineralisation density and the maximal mechanical strength to penetrate the subchondral bone plate was determined.

Results

Our data showed a coefficient of determination between 0.75 and 0.97 and a coefficient of correlation between 0.86 and 0.97. The T test showed significance (P < 0.05). Furthermore, we demonstrated a bicentric distribution of mineralisation patterns. The maximal mineralisation was found ventromedially and mediolaterally on the joint surface.

Conclusion

Our study shows good correlation of mineralisation and mechanical property of the inferior tibial facies. Therefore, as the results provide information on the topographical distribution of bone quality, they could be useful for the development of new fixation methods for total ankle prosthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aitken GK, Bourne RB, Finlay JB, Rorabeck CH, Andreae PR (1985) Indentation stiffness of the cancellous bone in the distal human tibia. Clin Orthop Relat Res 201:264–270

    PubMed  Google Scholar 

  2. Dörenberg KO (1983) Kontaktflächen und anatomische Gelenkflächen des oberen Sprunggelenks- Methoden zur Bestimmung der Flächengröße und Falldarstellung. Morphol Med 3:97–108

    PubMed  Google Scholar 

  3. Gabrion A, Jarde O, Havet E, Mertl P, Olory B, de Lestang M (2004) Ankle arthrodesis after failure of a total ankle prosthesis. Eight cases. Rev Chir Reparatirice Appar Mot 90(4):353–359

    CAS  Google Scholar 

  4. Hintermann B, Nigg BM (1995) Influence of arthrodeses on kinematics of the axially loaded ankle complex during Dorsalflexion/Plantarflexion. Foot Ankle Int 16:633–663

    PubMed  CAS  Google Scholar 

  5. Hoffmann AA, Hammon DJ, Daniels AU (1991) Compressive strength mapping of femoral head trabecular bone. J Rehabil Res 28(2):25–32

    Article  Google Scholar 

  6. Hopgood P, Kumar R, Wood PL (2006) Ankle arthordesis for failed ankle replacement. J Bone Joint Surg Br 88(8):1032–1038

    Article  PubMed  CAS  Google Scholar 

  7. Hvid I, Rasmussen O, Jensen NC, Nielsen S (1984) Trabecular bone strength profiles at the ankle joint. Clin Orthop 199:306–312

    Google Scholar 

  8. Kofoed H, Stürup J (1994) Comparison of ankle arthroplasty and arthrodesis. A prospective series with long term follow up. Foot 4:6–9

    Article  Google Scholar 

  9. Lachiewicz PF, Inglis AE, Ranawat CS (1984) Total ankle replacement in rheumatoid arthritis. J Bone Joint Surg 66A:340

    Google Scholar 

  10. Leicht P, Kofoed H (1992) Subtalar arthrosis following ankle arthrodesis. Foot 2:89–92

    Article  Google Scholar 

  11. Müller-Gerbl M (1998) The subchondral bone plate. Adv Anat Embryol Cell Biol 141(III-XI):1–134

    Google Scholar 

  12. Müller-Gerbl M, Putz R, Hodapp N, Schulte E, Wimmer B (1989) Computed tomography-osteoabsorptiomety: a method of assesing the mechanical condition of the major joints in a living subject. Clin Biomech 5:193–198

    Article  Google Scholar 

  13. Müller-Gerbl M, Putz R, Kenn R (1992) Demonstration of subchondral bone density patterns by three-dimensional CT osteoabsorptiometry as a non-invasive method for in vivo assessment of individual long-term stresses in joints. J Bone Miner Res 2:411–418

    Article  Google Scholar 

  14. Müller-Gerbl M, Putz R, Hodapp N, Schulte E, Wimmer B (1990) Demonstration of subchondral density pattern using CT-osteoabsorptiometry (CT-OAM) for the assessment of individual joint stress in live patients. Z Orthop Ihre Grenzb 128:128–133

    Article  Google Scholar 

  15. Müller-Gerbl M, Putz R, Hodapp N, Schulte E, Wimmer B (1989) Computed tomography-osteoabsoptiomety for assessing the density distribution of subchondral bone as a measure of longterm mechanical adaptation in individual joints. Skeletal Radiol 18:507–512

    Article  PubMed  Google Scholar 

  16. Müller-Gerbl M (1990) Die Darstellung der subchondralen Dichtemuster mittels der CT-Osteoabsorptiometrie (CT-OAM) zur Beurteilung der individuellen Gelenkbeanspruchung am Lebenden. Z Orthopädie 128:128–133

    Article  Google Scholar 

  17. Müller-Gerbl M (2008) The distribution of mineral density in the cervical vertebral endplates. Eur Spine J. doi:10.1007/s00586-008-0601-5

  18. Müller-Gerbl M et al (2001) Anatomy and biomechanics of the upper ankle joint. Orthopäde 30(1):3–11

    Article  PubMed  Google Scholar 

  19. Müller-Gerbl M, Putz R (1991) Funktionsbezogene Anatomie des oberen Sprunggelenks. In: Heim UFA (Hrsg) Die Pilon-tibial-Fraktur. Springer, Berlin

  20. Natens P, Dereymaeker G, Abbra M, Matricale G (2003) Early results after four years experience with the S.T.A.R. uncemented total ankle prothesis. Acta Orthop Belg 69(1):49–58

    PubMed  Google Scholar 

  21. Procter P, Paul JP (1982) Ankle joint biomechanics. J Biomech 15:627–634

    Article  PubMed  CAS  Google Scholar 

  22. Rudigier R, Grundel H, Menzinger F (2001) Prosthetic 2001 replacement of the ankle in posttraumatic arthrosis. Eur J Trauma 27:66–74

    Google Scholar 

  23. Saitoh S, Nakaksuchi Y, Latta L, Milne E (1994) Distribution of bone mineral density and bone strength of the proximal humerus. J Shoulder Elbow Surg 3:234–242

    Article  Google Scholar 

  24. Schmidt IM, Jäger M (1984) Anatomische Studie an 400 Leichensprunggelenken unter besonderer Berücksichtigung möglicher Varianten bezüglich Beschaffenheit und Verlauf der fibularen Bändern (Ergebnisse und klinische Relevanz). In: Hackenbroch, Refior HJ, Jäger M, Plitz W (Hreg) Funktionelle anatomie und Pathomechanik des Sprunggelenks. Thieme, Stuttgart New York

  25. Stauffer RN (1982) Salvage of painful total ankle arthroplasty. Clin Orthop 170:184

    PubMed  Google Scholar 

  26. Stauffer RN, Segal NM (1981) Total ankle arthroplasty: four years experience. Clin Orthop 160:217–233

    PubMed  Google Scholar 

  27. Wood PL, Deakin S (2003) Total ankle replacement. The result in 200 ankles. J Bone Joint Surg Br 85(3):334–341

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mühlhofer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mühlhofer, H., Ercan, Y., Drews, S. et al. Mineralisation and mechanical strength of the subchondral bone plate of the inferior tibial facies. Surg Radiol Anat 31, 237–243 (2009). https://doi.org/10.1007/s00276-008-0430-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-008-0430-6

Keywords

Navigation