Skip to main content
Log in

Radiation Exposure in Transjugular Intrahepatic Portosystemic Shunt Creation

  • Clinical Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

Transjugular intrahepatic portosystemic shunt (TIPS) creation is considered as being one of the most complex procedures in abdominal interventional radiology. Our aim was twofold: quantification of TIPS-related patient radiation exposure in our center and identification of factors leading to reduced radiation exposure.

Materials and methods

Three hundred and forty seven consecutive patients underwent TIPS in our center between 2007 and 2014. Three main procedure categories were identified: Group I (n = 88)—fluoroscopic-guided portal vein targeting, procedure done in an image intensifier-based angiographic system (IIDS); Group II (n = 48)—ultrasound-guided portal vein puncture, procedure done in an IIDS; and Group III (n = 211)—ultrasound-guided portal vein puncture, procedure done in a flat panel detector-based system (FPDS). Radiation exposure (dose-area product [DAP], in Gy cm2 and fluoroscopy time [FT] in minutes) was retrospectively analyzed.

Results

DAP was significantly higher in Group I (mean ± SD 360 ± 298; median 287; 75th percentile 389 Gy cm2) as compared to Group II (217 ± 130; 178; 276 Gy cm2; p = 0.002) and Group III (129 ± 117; 70; 150 Gy cm2 p < 0.001). The difference in DAP between Groups II and III was also significant (p < 0.001). Group I had significantly longer FT (25.78 ± 13.52 min) as compared to Group II (20.45 ± 10.87 min; p = 0.02) and Group III (19.76 ± 13.34; p < 0.001). FT was not significantly different between Groups II and III (p = 0.73).

Conclusions

Real-time ultrasound-guided targeting of the portal venous system during TIPS creation results in a significantly lower radiation exposure and reduced FT. Further reduction in radiation exposure can be achieved through the use of modern angiographic units with FPDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Miller DL, Balter S, Cole PE, et al. Radiation doses in interventional radiology procedures: the RAD-IR study: part I: overall measures of dose. J Vasc Interv Radiol. 2003;14(6):711–27.

    Article  PubMed  Google Scholar 

  2. Longo JM, Bilbao JI, Rousseau HP, et al. Color Doppler-US guidance in transjugular placement of intrahepatic portosystemic shunts. Radiology. 1992;184:281–4.

    Article  CAS  PubMed  Google Scholar 

  3. Harman JT, Reed JD, Kopecky KK, et al. Localization of the portal vein for transjugular catheterization: percutaneous placement of a metallic marker with real-time US guidance. J Vasc Interv Radiol. 1992;3:545–7.

    Article  CAS  PubMed  Google Scholar 

  4. Teitelbaum GP, Van Allan RJ, Reed RA, et al. Portal venous branch targeting with a platinum-tipped wire to facilitate transjugular intrahepatic portosystemic shunt (TIPS) procedures. Cardiovasc Intervent Radiol. 1993;16(3):198–200.

    Article  CAS  PubMed  Google Scholar 

  5. Maleux G, Nevens F, Heye S, et al. The use of carbon dioxide wedged hepatic venography to identify the portal vein: comparison with direct catheter portography with iodinated contrast medium and analysis of predictive factors influencing level of opacification. J Vasc Interv Radiol. 2006;17(11 Pt 1):1771–9.

    Article  PubMed  Google Scholar 

  6. Adamus R, Pfister M, Loose RWR. Enhancing transjugular intrahepatic portosystemic shunt puncture by using three-dimensional path planning based on the back projection of two two-dimensional portographs. Radiology. 2009;251(2):543–7.

    Article  PubMed  Google Scholar 

  7. Yamagami T, Tanaka O, Yoshimatsu R, et al. Hepatic artery guide wire targeting technique during transjugular intrahepatic portosystemic shunt. Br J Radiol. 2011;84(1000):315–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Chin MS, Stavas JM, Burke CT, et al. Direct puncture of the recanalized paraumbilical vein for portal vein targeting during transjugular intrahepatic portosystemic shunt procedures: assessment of technical success and safety. J Vasc Interv Radiol. 2010;21(5):671–6.

    Article  PubMed  Google Scholar 

  9. Miller DL, Kwon D, Bonavia GH. Reference levels for patient radiation doses in interventional radiology: proposed initial values for U.S. practice. Radiology. 2009;253(3):753–64.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Pinto NGV, Braz D, Vallim MA, et al. Radiation exposure in interventional radiology. Nucl Instrum Methods Phys Res A. 2007;580:586–90.

    Article  CAS  Google Scholar 

  11. Zweers D, Geleijns J, Aarts NJM, Hardam LJ, Lameris JS, Scultz FW, Kool LJS. Patient and staff radiation dose in fluoroscopy-guided TIPS procedures and dose reduction, using dedicated fluoroscopy exposure settings. Br J Radiol. 1998;71:672–6.

    Article  CAS  PubMed  Google Scholar 

  12. Hidajat N, Wust P, Kreuschner M, et al. Radiation risks for the radiologist performing transjugular intrahepatic portosystemic shunt (TIPS). Br J Radiol. 2006;79(942):483–6.

    Article  CAS  PubMed  Google Scholar 

  13. Livingstone RS, Keshava SN. Technical note: reduction of radiation dose using ultrasound guidance during transjugular intrahepatic portosystemic shunt procedure. Indian J Radiol Imaging. 2011;21(1):13–4.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Wambersie A. International Commission on Radiological Units and Measurements. Patient dosimetry for X-rays used in medical imaging. ICRU report. J ICRU. 2005;5(2):iv–vi.

    Article  Google Scholar 

  15. Stecker MS, Balter S, Towbin RB, et al. Guidelines for patient radiation dose management. J Vasc Interv Radiol. 2009;20(7 suppl):S263–73.

    Article  PubMed  Google Scholar 

  16. Miller DL, Balter S, Wagner LK, et al. Quality improvement guidelines for recording patient radiation dose in the medical record. J Vasc Interv Radiol. 2004;15:423–9.

    Article  PubMed  Google Scholar 

  17. Garcia-Pagan JC, Heydtmann M, Raffa S, et al. TIPS for Budd-Chiari syndrome: long-term results and prognostics factors in 124 patients. Gastroenterology. 2008;135(3):808–15.

    Article  PubMed  Google Scholar 

  18. Tripathi D, Macnicholas R, Kothari C, et al. Good clinical outcomes following transjugular intrahepatic portosystemic stent-shunts in Budd-Chiari syndrome. Aliment Pharmacol Ther. 2014;39(8):864–72.

    Article  CAS  PubMed  Google Scholar 

  19. Seijo S, Plessier A, Hoekstra J, et al. Good long-term outcome of Budd-Chiari syndrome with a step-wise management. Hepatology. 2013;57(5):1962–8.

    Article  PubMed  Google Scholar 

  20. Di Giorgio A, Agazzi R, Alberti D, et al. Feasibility and efficacy of transjugular intrahepatic portosystemic shunt (TIPS) in children. J Pediatr Gastroenterol Nutr. 2012;54(5):594–600.

    Article  PubMed  Google Scholar 

  21. Mermuys K, Maleux G, Heye S, et al. Use of the Viatorr expanded polytetrafluoroethylene-covered stent-graft for transjugular intrahepatic portosystemic shunt creation in children: initial clinical experience. Cardiovasc Intervent Radiol. 2008;31(Suppl 2):S192–6.

    Article  PubMed  Google Scholar 

  22. Vo NJ, Shivaram G, Andrews RT, et al. Midterm follow-up of transjugular intrahepatic portosystemic shunts using polytetrafluoroethylene endografts in children. J Vasc Interv Radiol. 2012;23(7):919–24.

    Article  PubMed  Google Scholar 

  23. Pillai AK, Joseph AM, Reddick M, et al. Intravascular US-guided transjugular intrahepatic portosystemic shunt creation in a second-trimester pregnancy to prophylactically decompress abdominal wall varices before cesarean section. J Vasc Interv Radiol. 2014;25(3):481–3.

    Article  PubMed  Google Scholar 

  24. Savage C, Patel J, Lepe MR, et al. Transjugular intrahepatic portosystemic shunt creation for recurrent gastrointestinal bleeding during pregnancy. J Vasc Interv Radiol. 2007;18(7):902–4.

    Article  PubMed  Google Scholar 

  25. Ingraham CR, Padia SA, Johnson GE, et al. Transjugular intrahepatic portosystemic shunt placement during pregnancy: a case series of five patients. Cardiovasc Intervent Radiol. 2015. doi:10.1007/s00270-015-1053-z.

  26. Kim KP, Miller DL, Berrington de Gonzalez A, et al. Occupational radiation doses to operators performing fluoroscopically-guided procedures. Health Phys. 2012;103(1):80–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. International Commission on Radiological Protection. ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs—threshold doses for tissue reactions in a radiation protection context. ICRP Publication 118. Oxford: Elsevier; 2012. Ann. ICRP 41(1–2).

  28. Suzuki S, Furui S, Kobayashi I, et al. Radiation dose to patients and radiologists during transcatheter arterial embolization: comparison of a digital flat-panel system and conventional unit. Am J Roentgenol. 2005;185(4):855–9.

    Article  Google Scholar 

  29. Miraglia R, Maruzzelli L, Tuzzolino F, et al. Radiation exposure in biliary procedures performed to manage anastomotic strictures in pediatric liver transplant recipients: comparison between radiation exposure levels using an image intensifier and a flat-panel detector-based system. Cardiovasc Intervent Radiol. 2013;36(6):1670–6.

    Article  PubMed  Google Scholar 

  30. Miraglia R, Maruzzelli L, Cortis K, et al. Comparison between radiation exposure levels using an image intensifier and a flat-panel detector-based system in image-guided central venous catheter placement in children weighing less than 10 kg. Pediatr Radiol. 2015;45(2):235–40.

    Article  PubMed  Google Scholar 

  31. Miraglia R, Maruzzelli L, Cortis K, et al. Digital subtraction angiography during transjugular intrahepatic portosystemic shunt creation or revision: data on radiation exposure and image quality obtained using a standard and a low-dose acquisition protocol in a flat-panel detector-based system. Abdom Imaging. 2014. doi:10.1007/s00261-014-0313-8.

  32. Anderson CL, Saad WE, Kalagher SD, et al. Effect of transjugular intrahepatic portosystemic shunt placement on renal function: a 7-year, single-center experience. J Vasc Interv Radiol. 2010;21(9):1370–6.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

Roberto Miraglia, Luigi Maruzzelli, Kelvin Cortis, Mario D’Amico, Gaetano Floridia, Giuseppe Gallo, Corrado Tafaro, and Angelo Luca declares that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Miraglia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miraglia, R., Maruzzelli, L., Cortis, K. et al. Radiation Exposure in Transjugular Intrahepatic Portosystemic Shunt Creation. Cardiovasc Intervent Radiol 39, 210–217 (2016). https://doi.org/10.1007/s00270-015-1164-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-015-1164-6

Keywords

Navigation