Skip to main content

Advertisement

Log in

Behavior of epidote at high pressure and high temperature: a powder diffraction study up to 10 GPa and 1,200 K

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The thermo-elastic behavior of a natural epidote [Ca1.925 Fe0.745Al2.265Ti0.004Si3.037O12(OH)] has been investigated up to 1,200 K (at 0.0001 GPa) and 10 GPa (at 298 K) by means of in situ synchrotron powder diffraction. No phase transition has been observed within the temperature and pressure range investigated. PV data fitted with a third-order Birch–Murnaghan equation of state (BM-EoS) give V 0 = 458.8(1)Å3, K T0 = 111(3) GPa, and K′ = 7.6(7). The confidence ellipse from the variance–covariance matrix of K T0 and K′ from the least-square procedure is strongly elongated with negative slope. The evolution of the “Eulerian finite strain” vs “normalized stress” yields Fe(0) = 114(1) GPa as intercept values, and the slope of the regression line gives K′ = 7.0(4). The evolution of the lattice parameters with pressure is slightly anisotropic. The elastic parameters calculated with a linearized BM-EoS are: a 0 = 8.8877(7) Å, K T0(a) = 117(2) GPa, and K′(a) = 3.7(4) for the a-axis; b 0 = 5.6271(7) Å, K T0(b) = 126(3) GPa, and K′(b) = 12(1) for the b-axis; and c 0 = 10.1527(7) Å, K T0(c) = 90(1) GPa, and K’(c) = 8.1(4) for the c-axis [K T0(a):K T0(b):K T0(c) = 1.30:1.40:1]. The β angle decreases with pressure, βP(°) = βP0 −0.0286(9)P +0.00134(9)P 2 (P in GPa). The evolution of axial and volume thermal expansion coefficient, α, with T was described by the polynomial function: α(T) = α0 + α1 T −1/2. The refined parameters for epidote are: α0 = 5.1(2) × 10−5 K−1 and α1 = −5.1(6) × 10−4 K1/2 for the unit-cell volume, α0(a) = 1.21(7) × 10−5 K−1 and α1(a) = −1.2(2) × 10−4 K1/2 for the a-axis, α0(b) = 1.88(7) × 10−5 K−1 and α1(b) = −1.7(2) × 10−4 K1/2 for the b-axis, and α0(c) = 2.14(9) × 10−5 K−1 and α1(c) = −2.0(2) × 10−4 K1/2 for the c-axis. The thermo-elastic anisotropy can be described, at a first approximation, by α0(a): α0(b): α0(c) = 1 : 1.55 : 1.77. The β angle increases continuously with T, with βT(°) = βT0 + 2.5(1) × 10−4 T + 1.3(7) × 10−8 T 2. A comparison between the thermo-elastic parameters of epidote and clinozoisite is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angel RJ (2000) Equation of state. In: Hazen RM, Downs RT (eds) High-temperature and high-pressure crystal chemistry. Reviews in Mineralogy and Geochemistry, vol 41. Mineralogical Society of America and Geochemical Society, Washington, pp 35–59

    Google Scholar 

  • Angel RJ (2001) EOS-FIT V6.0. Computer program. Crystallography Laboratory, Dept. geological sciences. Virginia Tech, Blacksburg

    Google Scholar 

  • Angel RJ, Bujak M, Zhao J, Gatta GD, Jacobsen SD (2007) Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J Appl Crystallogr 40:26–32

    Article  Google Scholar 

  • Bedognè F, Montrasio A, Sciesa E (1993) Valmalenco–I minerali della provincia di Sondrio. Bettini, Sondrio (Italy), p 275

    Google Scholar 

  • Birch F (1947) Finite elastic strain of cubic crystal. Phys Rev 71:809–824

    Article  Google Scholar 

  • Bird DK, Helgeson HC (1980) Chemical interaction of aqueous solutions with epidote-feldspar mineral assemblages in geologic systems, I: thermodynamic analysis of phase relations in the system CaO–FeO–Fe2O3–Al2O3–SiO2–H2O–CO2. Am J Science 280:907–941

    Article  Google Scholar 

  • Bird DK, Cho M, Janik CJ, Liou JG, Caruso LJ (1988) Compositional, order-disorder, and stable isotopic characteristics of Al-Fe epidote, state 2–14 drill hole, Salton Sea geothermal system. J Geophys Res 93(B11):13135–13144

    Google Scholar 

  • Bonazzi P, Menchetti S (2004) Manganese in monoclinic members of the epidote group: piemontite and related minerals. In: Franz G, Liebscher A (eds) Epidotes. Reviews in mineralogy and geochemistry, vol 56. Mineralogical Society of America and Geochemical Society, Washington, pp 495–552

    Google Scholar 

  • Catti M, Ferraris G, Ivaldi G (1988) Thermal behaviour of the crystal structure of strontian piemontite. Am Mineral 73:1370–1376

    Google Scholar 

  • Chervin JC, Canny B, Mancinelli M (2001) Ruby-spheres as pressure gauge for optically transparent high pressure cells. High Press Res 21:305–314

    Article  Google Scholar 

  • Comodi P, Zanazzi PF (1997) The pressure behaviour of clinozoisite and zoisite. An X-ray diffraction study. Am Mineral 82:61–68

    Google Scholar 

  • Connolly JAD (1990) Multivariable phase diagrams: an algorithm based on generalized thermodynamics. Am J Sci 290:666–718

    Article  Google Scholar 

  • Franz G, Liebscher A (2004) Physical and chemical properties of epidote minerals–An Introduction. In: Franz G, Liebscher A (eds) Epidotes. Reviews in mineralogy and geochemistry, vol 56. Mineralogical Society of America and Geochemical Society, Washington, pp 1–81

    Google Scholar 

  • Gatta GD, Meven M, Bromiley G (2010) Effects of temperature on the crystal structure of epidote: a neutron single-crystal diffraction study at 293 and 1,070 K. Phys Chem Miner 37:475–485

    Article  Google Scholar 

  • Gottschalk M (2004) Thermodynamic properties of zoisite, clinozoisite and epidote. In: Franz G, Liebscher A (eds) Epidotes. Reviews in mineralogy and geochemistry, vol 56. Mineralogical Society of America and Geochemical Society, Washington, pp 83–124

    Google Scholar 

  • Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Häusermann D (1996) Two-dimensional detector software: from real detector to idealized image or two-theta scan. High Press Res 14:235–245

    Article  Google Scholar 

  • Heinz DL, Jeanloz R (1984) The equation of state of the gold calibration standard. J Appl Phys 55:885–893

    Article  Google Scholar 

  • Helffrich G, Connolly JAD (2009) Physical contradictions and remedies using simple polythermal equations of state. Am Mineral 94:1616–1619

    Article  Google Scholar 

  • Holdaway MJ (1972) Thermal stability of Al-Fe epidotes as a function of fO2 and Fe content. Contrib Min Petrol 37:307–340

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorphic Geol 16:309–343

    Article  Google Scholar 

  • Holland TJB, Redfern SAT, Pawley AR (1996) Volume behaviour of hydrous minerals at high pressure and temperature: II. Compressibilities of lawsonite, zoisite, clinozoisite, and epidote. Am Mineral 81:341–348

    Google Scholar 

  • Klemd R (2004) Fluid inclusions in epidote minerals and fluid development in epidote-bearing rocks. In: Franz G, Liebscher A (eds) Epidotes. Reviews in mineralogy and geochemistry, vol 56. Mineralogical Society of America and Geochemical Society, Washington, pp 197–234

    Google Scholar 

  • Kvick Å, Pluth JJ, Richardson JW Jr, Smith JV (1988) The ferric ion distribution and hydrogen bonding in epidote: a neutron diffraction study at 15 K. Acta Cryst B44:351–355

    Google Scholar 

  • Larson AC, Von Dreele RB (1994) General structure analysis system (GSAS), Los Alamos National Laboratory Report LAUR 86–748

  • Le Bail A, Duroy H, Fourquet JL (1988) Ab initio structure determination of LiSbWO6 by X-ray powder diffraction. Mat Res Bull 23:447–452

    Article  Google Scholar 

  • Liebscher A (2004) Spectroscopy of epidote minerals. In: Franz G, Liebscher A (eds) Epidotes. Reviews in mineralogy and geochemistry, vol 56. Mineralogical Society of America and Geochemical Society, Washington, pp 125–170

    Google Scholar 

  • Liebscher A, Gottschalk M, Franz G (2002) The substitution Fe3+-Al and the isosymmetric displacive phase stransition in synthetic zoisite: a powder X-ray and infrared spectroscopy study. Am Mineral 87:909–921

    Google Scholar 

  • Liou JG (1973) Synthesis and stability relations of epidote, Ca2Al2FeSi3O12(OH). J Petrol 14:381–413

    Google Scholar 

  • Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676

    Article  Google Scholar 

  • Meneghini C, Artioli G, Balerna A, Gualtieri AF, Norby P, Mobilio S (2001) Multipurpose imaging-plate camera for in situ powder XRD at the GILDA beamline. J Synchrotron Rad 8:1162–1166

    Article  Google Scholar 

  • Miletich R, Allan DR, Kush WF (2000) High-pressure single-crystal techniques. In: Hazen RM, Downs RT (eds) High-Temperature and high-pressure crystal chemistry, reviews in mineralogy and geochemistry, vol 41. Mineralogical Society of America and Geochemical Society, Washington, pp 445–519

    Google Scholar 

  • Murnaghan FD (1937) Finite deformations of an elastic solid. Am J Math 49:235–260

    Article  Google Scholar 

  • Ohashi Y (1982) STRAIN: a program to calculate the strain tensor from two sets of unit-cell parameters. In: Hazen RM, Finger LW, Comparative Crystal Chemistry. Wiley, New York, pp 92–102

  • Pawley AR, Redfern SAT, Holland TJB (1996) Volume behaviour of hydrous minerals at high pressure and temperature: 1. Thermal expansion of lawsonite, zoisite, clinozoisite, and diaspore. Am Mineral 81:335–340

    Google Scholar 

  • Poli S, Schmidt MW (1998) The high-pressure stability of zoisite and phase relationships of zoisite-bearing assemblages. Contrib Mineral Petrol 130:162–175

    Article  Google Scholar 

  • Poli S, Schmidt MW (2004) Experimental subsolidus studies on epidote minerals. In: Franz G, Liebscher A (eds) Epidotes. Reviews in mineralogy and geochemistry, vol 56. Mineralogical Society of America and Geochemical Society, Washington, pp 171–195

    Google Scholar 

  • Qin S, Wu X, Liu J, Liu J, Wu ZY, Li XD, Lu AH (2003) Compressibility of Epidote up to 20 GPa at 298 K. Chin Phys Lett 20:1172–1174

    Article  Google Scholar 

  • Schmidt MW, Poli S (2004) Magmatic epidotes. In: Franz G, Liebscher A (eds) Epidotes. Reviews in mineralogy and geochemistry, vol 56. Mineralogical Society of America and Geochemical Society, Washington, pp 399–430

    Google Scholar 

  • Thomson P, Cox DE, Hastings JB (1987) Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3. J Appl Crystallogr 20:79–83

    Article  Google Scholar 

Download references

Acknowledgments

Carlo Meneghini is acknowledged for the use of the software Scan_Zero, used for integration of translational imaging-plate data, and for helpful discussions. ESRF is thanked for the allocation of beam time. GDG thanks the Italian MIUR (grant no. 2008SPZ743). YL thanks the support by Mid-career Researcher Program through NRF grant funded by the Ministry of Education, Science and Technology (MEST) of the Korean Government (No. 2009-0083847). Experiments at PAL were supported in part by MEST and Pohang University of Science and Technology (POSTECH). M. Welch, an anonymous reviewer and the editor M. Rieder are thanked for their suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Diego Gatta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diego Gatta, G., Merlini, M., Lee, Y. et al. Behavior of epidote at high pressure and high temperature: a powder diffraction study up to 10 GPa and 1,200 K. Phys Chem Minerals 38, 419–428 (2011). https://doi.org/10.1007/s00269-010-0415-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-010-0415-y

Keywords

Navigation