Skip to main content
Log in

The \(R{\overline{3}} c \to R{\overline{3}} m\) transition in nitratine, NaNO3, and implications for calcite, CaCO3

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The temperature dependences of the crystal structure and superstructure intensities in sodium nitrate, mineral name nitratine, NaNO3, were studied using Rietveld structure refinements based on synchrotron powder X-ray diffraction. Nitratine transforms from \(R{\overline{3}} c\;\hbox{to}\;R{\overline{3}} m\) at T c = 552(1) K. A NO3 group occupies, statistically, two positions with equal frequency in the disordered \(R{\overline{3}} m\) phase, but with unequal frequency in the partially ordered \(R{\overline{3}} c\) phase. One position for the NO3 group is rotated by 60° or 180° with respect to the other. The occupancy of the two orientations in the \(R{\overline{3}} c\) phase is obtained from the occupancy factor, x, for the O1 site and gives rise to the order parameter, S = 2x − 1, where S is 0 at T c and 1 at 0 K. The NO3 groups rotate in a rapid process from about 541 to T c, where the a axis contracts. Using a modified Bragg–Williams model, a good fit was obtained for the normalized intensities (that is, normalized, NI1/2) for the (113) and (211) reflections in \(R{\overline{3}} c\hbox {\,NaNO}_{3},\) and indicates a second-order transition. Using the same model, a reasonable fit was obtained for the order parameter, S, and also supports a second-order transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Antao SM, Hassan I, Mulder WH, Lee PL, Toby BH (2008) In situ study of the \(R{\overline{3}} c \to R{\overline{3}} m\) orientational disorder in calcite. Phys Chem Miner (submitted)

  • Antao SM, Mulder WH, Hassan I, Crichton W, Parise JB (2004) Cation disorder in dolomite, CaMg(CO3)2, and its influence on the aragonite + magnesite → dolomite reaction boundary. Am Mineral 89:1142–1147

    Google Scholar 

  • Berg GW (1986) Evidence for carbonate in the mantle. Nature 324:50–51

    Article  Google Scholar 

  • Carlson WD (1983) The polymorphs of CaCO3 and the aragonite–calcite transformations. Mineral Soc Am Rev Mineral 11:191–225

    Google Scholar 

  • Cherin P, Hamilton WC, Post B (1967) Position and thermal parameters of oxygen atoms in sodium nitrate. Acta Crystallogr 23:455–460

    Article  Google Scholar 

  • Dove MT, Powell BM (1989) Neutron-diffraction study of the tricritical orientational order–disorder phase-transition in calcite at 1260-K. Phys Chem Miner 16:503–507

    Article  Google Scholar 

  • Dove MT, Swainson IP, Powell BM, Tennant DC (2005) Neutron powder diffraction study of the orientational order–disorder phase transition in calcite, CaCO3. Phys Chem Miner 32:493–503

    Article  Google Scholar 

  • Ferrario M, Lyndenbell RM, McDonald IR (1994) Structural fluctuations and the order–disorder phase-transition in calcite. J Phys Condens Matter 6:1345–1358

    Article  Google Scholar 

  • Gonschorek W, Schmahl WW, Weitzel H, Miehe G, Fuess H (1995) Anharmonic motion and multipolar expansion of the electron-density in NaNO3. Z Kristallogr 210:843–849

    Article  Google Scholar 

  • Gonschorek G, Weitzel H, Miehe G, Fuess H, Schmahl WW (2000) The crystal structures of NaNO3 at 100 K, 120 K, and 563 K. Z Kristallogr 215:752–756

    Article  Google Scholar 

  • Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Hausermann D (1996) Two-dimensional detector software: from real detector to idealised image to two-theta scan. High Press Res 14:235–248

    Article  Google Scholar 

  • Harris MJ (1999) A new explanation for the unusual critical behavior of calcite and sodium nitrate, NaNO3. Am Mineral 84:1632–1640

    Google Scholar 

  • Harris MJ, Salje EKH, Guttler BK (1990) An infrared spectroscopic study of the internal-modes of sodium-nitrate—implications for the structural phase-transition. J Phys Condens Matter 2:5517–5527

    Article  Google Scholar 

  • Harris MJ, Hagen ME, Dove MT, Swainson IP (1998) Inelastic neutron scattering, phonon softening, and the phase transition in sodium nitrate, NaNO3. J Phys Condens Matter 10:6851–6861

    Article  Google Scholar 

  • Inkinen O (1960) Experimental structure amplitudes of trigonal sodium nitrate and the atomic form amplitudes of its sodium ions. Ann Acad Sci Fenn Ser A 55:1–45

    Google Scholar 

  • Larson AC, Von Dreele RB (2000) General structure analysis system (GSAS). Los Alamos National Laboratory Report, LAUR 86–748

  • Lee PL, Shu D, Ramanathan M, Preissner C, Wang J, Beno MA, Von Dreele RB, Ribaud L, Kurtz C, Antao SM, Jiao X, Toby BH (2008) A twelve-analyzer detector system for high-resolution powder diffraction. J Synchrotron Radiat 15:427–432

    Google Scholar 

  • Lefebvre J, Fouret R, Zeyen CME (1984) Structure determination of sodium nitrate near the order–disorder phase transition. J Phys 45:1317–1327

    Google Scholar 

  • Liu JJ, Duan CG, Ossowski MM, Mei WN, Smith RW, Hardy JR (2001) Simulation of structural phase transition in NaNO3 and CaCO3. Phys Chem Miner 28:586–590

    Article  Google Scholar 

  • Lynden-Bell RM, Ferrario M, Mcdonald IR, Salje E (1989) A molecular-dynamics study of orientational disordering in crystalline-sodium nitrate. J Phys Condens Matter 1:6523–6542

    Article  Google Scholar 

  • Markgraf SA, Reeder RJ (1985) High-temperature structure refinements of calcite and magnesite. Am Mineral 70:590–600

    Google Scholar 

  • Maslen EN, Streltsov VA, Streltsova NR (1993) X-Ray study of the electron-density in calcite, CaCO3. Acta Crystallogr Sect B Struct Sci 49:636–641

    Article  Google Scholar 

  • Megaw HD (1973) Crystal structures: a working approach. W. Saunders, Philadelphia

    Google Scholar 

  • Paul GL, Pryor AW (1971) The study of sodium nitrate by neutron diffraction. Acta Crystallogr B27:2700–2702

    Google Scholar 

  • Payne SJ, Harris MJ, Hagen ME, Dove MT (1997) A neutron diffraction study of the order–disorder phase transition in sodium nitrate. J Phys Condens Matter 9:2423–2432

    Article  Google Scholar 

  • Poon WCK, Salje E (1988) The excess optical birefringence and phase-transition in sodium-nitrate. J Phys C Solid State Phys 21:715–729

    Article  Google Scholar 

  • Redfern SAT, Salje E, Navrotsky A (1989) High-temperature enthalpy at the orientational order–disorder transition in calcite—implications for the calcite–aragonite phase-equilibrium. Contrib Mineral Petrols 101:479–484

    Article  Google Scholar 

  • Reeder RJ, Redfern SAT, Salje E (1988) Spontaneous strain at the structural phase-transition in NaNO3. Phys Chem Miner 15:605–611

    Article  Google Scholar 

  • Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Google Scholar 

  • Salje E, Viswanathan K (1976) Phase-diagram calcite–aragonite as derived from crystallographic properties. Contrib Mineral Petrol 55:55–67

    Article  Google Scholar 

  • Schmahl WW (1988) Diffraction intensities as thermodynamic parameters—orientational ordering in NaNO3. Z Kristallogr 182:231–233

    Google Scholar 

  • Schmahl WW, Salje E (1989) X-ray-diffraction study of the orientational order–disorder transition in NaNO3—evidence for order parameter coupling. Phys Chem Miner 16:790–798

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  • Steinitz MO, Pink DA, Clancy JP, MacDonald AN, Swainson I (2004) Sodium nitrate—a difficult discontinuous phase transition. Can J Phys 82:1097–1107

    Article  Google Scholar 

  • Strømme KO (1969a) The crystal structure of sodium nitrate in the high-temperature phase. Acta Chem Scand 23:1616–1624

    Article  Google Scholar 

  • Strømme KO (1969b) On the crystal structure of potassium nitrate in the high temperature phases I and III. Acta Chem Scand 23:1625–1636

    Article  Google Scholar 

  • Strømme KO (1972) On the mechanism of the continuous transformation in sodium nitrate. Acta Chem Scand 26:477–482

    Article  Google Scholar 

  • Strømme KO (1975) Crystal-structures of high-temperature forms of strontium and barium carbonate and structurally related compounds. Acta Chem Scand A 29:105–110

    Article  Google Scholar 

  • Swainson IP, Dove MT, Harris MJ (1998) The phase transitions in calcite and sodium nitrate. Phys B 241:397–399

    Article  Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–221

    Article  Google Scholar 

  • Wang J, Toby BH, Lee PL, Ribaud L, Antao SM, Kurtz C, Ramanathan M, Von Dreele RB, Beno MA (2008) A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operation results. Rev Sci Instrum 79:085105. doi:10.1063/1.2969260

    Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous reviewers for useful comments. XRD data were collected at the X-ray Operations and Research beam-lines 1-BM and 11-BM, Advanced Photon Source, Argonne National Laboratory. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sytle M. Antao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antao, S.M., Hassan, I., Mulder, W.H. et al. The \(R{\overline{3}} c \to R{\overline{3}} m\) transition in nitratine, NaNO3, and implications for calcite, CaCO3 . Phys Chem Minerals 35, 545–557 (2008). https://doi.org/10.1007/s00269-008-0232-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-008-0232-8

Keywords

Navigation