Skip to main content
Log in

Effect of heat treatment on tourmaline from Brazil

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The crystal-chemical behaviour of tourmaline from Araçuaí, Minas Gerais state, Brazil, when subjected to heating in air atmosphere has been studied by several techniques, including EMPA, UV–Vis, TGA, and Mössbauer spectroscopy. The tourmaline samples are typically intermediate members of the elbaite-schorl series. The origin of colour and of its change after treatment has been discussed in terms of local disorder, presence of metal transition elements, oxidation of ferrous iron at the octahedral site, and simultaneous trap of the excess electron. These findings may be used to enhance the colour in tourmaline crystals or generate wanted colour changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bakhatin AI, Minko O, Vinokurov VM (1975) Isomorphism and colour of tourmaline. Izv Akad Nauk SSSR Ser Geol 6:73

    Google Scholar 

  • Bershov LV, Martirossyan VO, Marfunin AS, Plantanov AN, Tarasschan AN (1969) Colour centres in lithium tourmaline (elbaite). Sov Phys Crystallogr 13:629–630

    Google Scholar 

  • Bloodaxe ES, Hughes JM, Dyar MD, Grew ES, Guidotti CV (1999) Linking structure and chemistry in the Schorl–Dravite series. Am Mineral 84:922–928

    Google Scholar 

  • Burns RG (1982) The blackness of Schorl: Fe(2+) Fe(3+) electron delocalization in tourmaline. Trans Am Geophys Union 64:1142

    Google Scholar 

  • Burns PC, MacDonald DJ, Hawthorne F (1994): The crystal chemistry of manganese-bearing elbaite. Can Mineral 32:31–41

    Google Scholar 

  • Castañeda C, Oliveira EF, Gomes N, Pedrosa-Soares AC (2000) Infrared study of OH sites in tourmaline from the elbaite-schorl series. Am Mineral 85:1503–1507

    Google Scholar 

  • Chaudhry MN, Howie RA (1976) Lithium tourmalines from The Meldon Aplite Devonshire, England. Mineral Mag 40:747–751

    Article  Google Scholar 

  • da Costa GM, Castañeda C, Gomes NS, Soares ACP, Santana GP (1997) On the analysis of the Mössbauer spectra of tourmalines. Hyp Interact C 2:29–34

    Google Scholar 

  • da Costa GM, Castañeda C, Eeckhout SG, De Grave E, Gomes NS (1998) The temperature dependence of the hyperfine parameters of tourmalines. Hyp Interact C 3:344–347

    Google Scholar 

  • De Camargo MB, Isotani S (1988) Optical absorption spectroscopy of natural and irradiated pink tourmaline. Am Mineral 73:172–180

    Google Scholar 

  • De Grave E, Van Alboom A (1991) Evaluation of ferrous and ferric Mössbauer fractions. Phys Chem Minerals 18:337–342

    Article  Google Scholar 

  • Donnay G (1969) Crystaline homogeneity: evidence from electron-probe study of Brazilian tourmalines. Carnegie Inst Washington Ann Dir Geophys Lab 8:219–220

    Google Scholar 

  • Donnay G, Barton R (1972) Refinement of the crystal structure of elbaite and the mechanism of tourmaline solid solution. Tscher Min Petr Mitt 18:273–286

    Article  Google Scholar 

  • Dunn PJ (1975) On gem elbaite from Newry, Maine, USA. J Gemmol 14:357–368

    Google Scholar 

  • Dyar MD, Taylor ME, Lutz TM, Francis CA, Guidotti CV, Wise M (1998) Inclusive chemical characterization of tourmaline: Mössbauer study of Fe valence and site occupancy. Am Mineral 83:848–864

    Google Scholar 

  • Eeckhout SG, De Grave E (2003) Evaluation of ferrous and ferric Mössbauer fractions Part II. Phys Chem Minerals 30:142–146

    Article  Google Scholar 

  • Eeckhout SG, Corteel C, Van Coster E, De Grave E, De Paepe P (2004) Crystal-chemical characterization of tourmalines from the English Lake District: electron-microprobe analyses and Mössbauer spectroscopy. Am Mineral 89:1743–1751

    Google Scholar 

  • Ertl A, Hughes JM, Marler B (2001) Empirical formulae for the calculation of <T–O> and X–O2 bond lengths in tourmaline and relations to tetrahedrally-coordinated boron. N Jb Miner Mh 12:548–557

    Google Scholar 

  • Ertl A, Hughes JM, Prowatke S, Rossman GR, London D, Fritz EA (2003) Mn-rich tourmaline from Austria: structure, chemistry, optical spectra, and relations to synthetic solid solutions. Am Mineral 88:1369–1376

    Google Scholar 

  • Faye GH, Manning PG, Gosselin JR (1974) The optical absorption spectra of tourmaline importance of charge-transfer processes. Can Mineral 12:370–380

    Google Scholar 

  • Ferrow EA, Annersten H, Gunawardane RP (1988) Mossbauer-effect study on the mixed-valence state of iron in tourmaline. Mineral Mag 52:221–228

    Article  Google Scholar 

  • Fuchs Y, Lagache M, Linares J, Maury R, Varret F (1995) Mössbauer and optical spectrometry of selected schorl-dravite tourmalines. Hyp Interact 96:245–258

    Article  Google Scholar 

  • Fuchs Y, Lagache M, Linares J (2002) Annealing in oxidising conditions of Fe-tourmalines and correlated deprotonation of OH groups. CR Geosci 334(4):245–249

    Article  Google Scholar 

  • Grice JD, Ercit TS (1993) Ordering of Fe and Mg in the tourmaline crystal structure. The correct formula. N Jb Miner Abh 165:245–266

    Google Scholar 

  • Hawthorne FC (1996) Structural mechanisms for light-element variations in tourmaline. Can Mineral 34:123–132

    Google Scholar 

  • Hawthorne FC, Henry DJ (1999) Classification of the minerals of the tourmaline group. Eur J Mineral 11:201–215

    Google Scholar 

  • Hermon E, Simkin DJ, Donnay G, Muir WB (1973) The distribution of Fe(2+) and Fe(3+) in iron-bearing tourmalines: a Mössbauer study. Tscher Min Petr Mitt 17:124–132

    Article  Google Scholar 

  • Hughes JM, Ertl A, Dyar MD, Grew ES, Shearer CK, Yates MG, Guidotti CV (2000) Tetrahedrally coordinated boron in a tourmaline: boron-rich olenite from Stoffhutte, Koralpe, Austria. Can Mineral 38:861–868

    Article  Google Scholar 

  • Ja YH (1972) g=43 isotropic epr line in tourmaline. Chem Phys (USA) 57(7):320–322

    Google Scholar 

  • Krambrock K, Pinheiro MVB, Medeiros SM, Guedes KJ, Schweizer S, Spaeth JM (2002) Investigation of radiation-induced yellow color in tourmaline by magnetic resonance. Nucl Instrum Meth B 191:241–245

    Article  Google Scholar 

  • Leckebusch R (1978) Chemical composition and colour of tourmalines from Darre Pech (Nuristan, Afghanistan). N Jb Miner Abh 133:53–70

    Google Scholar 

  • Manning PG (1969) Optical absorption spectra of chromium bearing tourmalines, black tourmaline and buerguerite. Can Mineral 10:57–70

    Google Scholar 

  • Manning PG (1973) Effect of second-nearest-neighbor interaction on Mn3+ absorption in pink and black tourmalines. Can Mineral 11:971–977

    Google Scholar 

  • Mattson SM, Rossman GR (1987) Fe2+–Fe3+ interactions in tourmaline. Phys Chem Minerals 14:163–171

    Article  Google Scholar 

  • Morteani G, Preinfalk C, Horn AH (2000) Classification and mineralization potential of the pegmatites of the Eastern Brazilian Pegmatite Province. Mineral Deposita 35:638–655

    Article  Google Scholar 

  • Nassau K (1994) Gemstone enhancement history, science and state of the art. 1st edn. St. Edmundsbury Press, Great Britain, p 252

    Google Scholar 

  • Oliveira EF, Castañeda C, Eeckhout SG, Gilmar MM, Kwitko RR, Botelho NF (2002) Infrared study of Brazilian tourmalines from different geological environments. Am Mineral 87:1154–1163

    Google Scholar 

  • Pedrosa-Soares AC, Wiedemann-Leonardos CM (2000) Evolution of the Araçuaí belt and its connection to the Ribeira belt, eastern Brazil. In: UG Cordani EJ, Milani A, Thomaz DA Campo (eds) Tectonic evolution of South America, 31st international geological congress, Rio de Janeiro, pp 265–285

  • Perfilýev YuD, Gorelikhova NV, Babeshkin AM (1973) Oxidation of tourmaline in the 200–1100°C range. Int Geol Rev 20:982–990

    Google Scholar 

  • Pieczka A, Kraczka J (2004) Oxidized tourmalines—a combined chemical, XRD and Mössbauer study. Eur J Mineral 16:309–321

    Article  Google Scholar 

  • Pieczka A, Kraczka J, Zabinski W (1997) Mössbauer spectra of Fe3+-poor schorls: reinterpretation of the spectra on a basis of an ordered structure model. In: International symposium on tourmaline, abstract, Nové Mesto na Morave, Czech Republic, pp 74–75

  • Pinto CP, Pedrosa-Soares AC (2001) Brazilian gem provinces. Austral Gemmol 21:12–16

    Google Scholar 

  • Reinitz IM, Rossman GR (1988) Role of natural radiation in tourmaline colouration. Am Mineral 73:822–825

    Google Scholar 

  • Rosenberg PE, Foit FF (1979) Synthesis and characterization of alkali-free tourmaline. Am Mineral 64:180–186

    Google Scholar 

  • Rossman GR, Mattson SM (1986) Yellow Mn-rich elbaite with Mn–Ti intervalence charge transfer. Am Mineral 71:599–602

    Google Scholar 

  • Saegusa N, Price DC, Smith G (1978) Analysis of the Mössbauer spectra of several iron-rich tourmalines. In “ICAME, international conference on the application of the Mössbauer effect, Annais, Kyoto, Japan 1:38–42

  • Schreyer W, Wodara U, Marler B, van Aken PA, Seifert F, Robert JL (2000) Synthetic tourmaline (olenite) with excess baron replacing silicon in the tetrahedral site: I Synthesis conditions, chemical and spectroscopic evidence. Eur J Mineral 12:529–541

    Google Scholar 

  • Schreyer W, Hughes JM, Bernhardt HJ, Kalt A, Prowatke S, Ertl A (2002) Reexamination of olenite from the type locality: detection of boron in tetrahedral coordination. Eur J Mineral 14:935–942

    Article  Google Scholar 

  • Sinkankas J (1981) Gemstone, mineral data book. 2nd edn. Van Nostrand Reinhold Company, New York, p 352

    Google Scholar 

  • Taran MN, Rossman GR (2002) High-temperature, high-pressure optical spectroscopic study of ferric-iron-bearing tourmaline. Am Mineral 87:1148–1153

    Google Scholar 

  • Taran MN, Lebedev AS, Platanov NA (1993) Optical absorption spectroscopy of synthetic tourmalines. Phys Chem Minerals 20:209–220

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the Brazilian research-funding agencies Conselho Nacional de Pesquisa (CNPq), CAPES and Fundação Educativa de Ouro Preto (FEOP). Financial support for the Mössbauer study was obtained from the Fund for Scientific Research—Flanders, Belgium, grant G018503. Special acknowledgments go to Dr. A.C.S. Sabione, César Mendonça, and José Davi Cabral from Universidade Federal de Ouro Preto, Brazil. The work benefited from the reviews of Y. Fuchs and an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiane Castañeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castañeda, C., Eeckhout, S.G., Costa, G.M.d. et al. Effect of heat treatment on tourmaline from Brazil. Phys Chem Minerals 33, 207–216 (2006). https://doi.org/10.1007/s00269-006-0067-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-006-0067-0

Keywords

Navigation