Skip to main content

Advertisement

Log in

Pressure-induced phase transition in Mg0.8Fe0.2O ferropericlase

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Combined X-ray powder diffraction, Mössbauer, and XANES spectroscopy in situ experiments revealed the transformation of cubic (Mg0.8Fe0.2)O ferropericlase to a rhombohedrally distorted phase at 35(1) GPa and room temperature. The Mössbauer spectroscopy results show that the rhombohedral distortion does not involve magnetic ordering. Combined with data from the literature, our results imply that the cubic to rhombodedral transition occurs in (Mg,Fe)O under conditions of non-hydrostatic stress over a wide range of composition (0.2≤x Fe≤1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ankudinov AL, Bouldin CE, Rehr JJ, Sims J, Hung H (2002) Parallel calculation of electron multiple scattering using Lanczos algorithms. Phys Rev B 65:104–107

    Article  Google Scholar 

  • Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys Rev B 58:7565–7576

    Article  Google Scholar 

  • Badro J, Fiquet G, Guyot F, Rueff JP, Struzhkin VV, Vankó G, Monaco G (2003) Iron partitioning in Earth’s mantle: toward a deep lower mantle discontinuity. Science 300:789–791

    Article  Google Scholar 

  • von Barth U, Grossmann G (1982) Dynamical effects in x-ray spectra and the final-state rule. Phys Rev B 25:5150–5179

    Article  Google Scholar 

  • Bloch D, Hermann-Ronzaud D, Vettier C, Yelon WB, Alben R (1975) Stress-induced tricritical phase transition in manganese oxide. Phys Rev Lett 35:963–967

    Article  Google Scholar 

  • Dobson DP, Cohen NS, Pankhurst QA, Brodholt JP (1998) A convenient method for measuring ferric iron in magnesiowustite (MgO–Fe1−x O). Am Miner 83:794–798

    Google Scholar 

  • Dubrovinskaia N, Dubrovinsky L (2003) Whole-cell heater for the diamond anvil cell. Rev Sci Instr 74:3433–3437

    Article  Google Scholar 

  • Dubrovinsky L, Dubrovinskaya N (2004) Angle-dispersive diffraction under non-hydrostatic stress in diamond anvil cells. J All Comp 375:86–92

    Article  Google Scholar 

  • Dubrovinsky L, Dubrovinskaia N, Saxena S, LiBehan T (2000a) X-ray diffraction under non-hydrostatic conditions in experiments with diamond anvil cell: wustite (FeO) as an example. Mater Sci Eng A 288:187–190

    Article  Google Scholar 

  • Dubrovinsky LS, Dubrovinskaia NA, Saxena SK, Annersten H, Hålenius E, Harryson H, Tutti F, Rekhi S, Le Bihan T (2000b) Stability of ferropericlase in the lower mantle. Science 289:430–432

    Article  Google Scholar 

  • Duffy TS, Hemley RJ, Mao HK (1995) Equation of state and shear strength at multimegabar pressures: magnesium oxide to 227 GPa. Phys Rev Lett 74:1371–1374

    Article  Google Scholar 

  • Fang Z, Solovyev IV, Sawada H, Terakura K (1999) First-principle study on electronic structures and phase stability of MnO and FeO under high pressure. Phys Rev B 59:762–774

    Article  Google Scholar 

  • Funamori N, Funamori M, Jeanloz R, Hamaya N (1997) Broadening of x-ray powder diffraction lines under nonhydrostatic stress. J Appl Phys 82:142–146

    Article  Google Scholar 

  • Gale JD (1997) GULP—a computer program for the symmetry adapted simulation of solids. J Chem Soc, Faraday Trans 4:629–637

    Article  Google Scholar 

  • Gramsch SA, Cohen RE, Savrasov SY (2003) Structure, metal–insulator transitions, and magnetic properties of FeO at high pressures. Am Miner 88:257–261

    Google Scholar 

  • Guo QZ, Mao HK, Hu J, Shu J, Hemley RJ (2002) The phase transitions of CoO under static pressure to 104 GPa. J Phys: Condens Matter 14:11369–11374

    Article  Google Scholar 

  • Hedin L, Lundqvist BI (1971) Explicit local exchange-correlation potentials. J Phys C 4:2064–2083

    Article  Google Scholar 

  • Kantor AP, Jacobsen SD, Kantor IYu, Dubrovinsky LS, McCammon CA, Reichmann HJ, Goncharenko IN (2004a) Pressure-induced magnetization in FeO: evidence from elasticity and Mössbauer spectroscopy. Phys Rev Lett 93:215502

    Article  Google Scholar 

  • Kantor IYu, McCammon CA, Dubrovinsky LS (2004b) Mossbauer spectroscopic study of pressure-induced magnetisation in wiistite (FeO). J All Comp 376:5–8

    Article  Google Scholar 

  • Kantor IYu, Dubrovinsky LS, Kantor AP, Urusov VS, McCammon C, Crichton W (2005) Trigonal distortion of ferropericlase (Mg0.8Fe0.2)O at high pressures. Dokl Phys 50:343–345

    Article  Google Scholar 

  • Kizler P (1992) X-ray-absorption near-edge structure spectra for bulk materials: multiple-scattering analysis versus a phenomenological approach. Phys Rev B 46:10540–10546

    Article  Google Scholar 

  • Kondo T, Ohtani E, Hirao N, Yagi T, Kikegawa T (2004) Phase transitions of (Mg,Fe)O at megabar pressures. Phys Earth Planet Int 201:143–144

    Google Scholar 

  • Kondo T, Ohtani E, Yagi T, Kikegawa T (2002) In-situ X-ray study of (Mg,Fe)O under high pressure and temperature. J Conf Abstr 7:57

    Google Scholar 

  • Kuzmin A, Mironova N, Purans J (1997) The influence of pd mixing and magnetic interactions on the pre-edge peak intensity at the Co (Ni) K absorption edge in Co(Ni)cMg1–cO solid solutions. J Phys: Condens Matter 9:5277–5286

    Article  Google Scholar 

  • Lin JF, Heinz DL, Mao HK, Hemley RJ, Devine JM, Li J, Shen G (2003) Stability of magnesiowustite in Earth’s lower mantle. Proc Natl Acad Sci USA 100:4405–4408

    Article  Google Scholar 

  • Lin JF, Struzhkin VV, Jacobsen SD, Hu MY, Chow P, Kung J, Liu H, Mao HK, Hemley RJ (2005) Spin transition of iron in magnesiowüstite in the Earth’s lower mantle. Nature 436:377–380

    Article  Google Scholar 

  • Lytle FW, Greegor RB, Panson AJ (1988) Discussion of x-ray-absorption near-edge structure: application to Cu in the high-T c superconductors La1.8Sr0.2CuO4 and YBa2Cu3O7. Phys Rev B 37:1550–1562

    Article  Google Scholar 

  • Mao W, Shu J, Hu J, Hemley R, Mao HK (2002) Displacive transition in magnesiowustite. J Phys: Condens Matter 14:11349–11354

    Article  Google Scholar 

  • Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasihydrostatic conditions. J Geophys Res 91:4673–4678

    Article  Google Scholar 

  • McCammon CA, Tennant C (1996) High-pressure Mössbauer study of synthetic clinoferrite, FeSiO3. “Mineral spectroscopy: a tribute to Roger G. Burns”, Special publication no. 5, Geochemical Society, Houston, pp 281–288

  • McCammon C, Peyronneau J, Poirier J-P (1998) Low ferric iron content of (Mg,Fe)O at high pressures and temperatures. Geophys Res Lett 25:1589–1592

    Article  Google Scholar 

  • Merkel S, Wenk HR, Shu J, Shen G, Gillet P, Mao HK, Hemley RJ (2002) Deformation of polycrystalline MgO at pressures of the lower mantle. J Geophys Res 107:2271–2288

    Article  Google Scholar 

  • Minervini L, Grimes RW (1999) Defect clustering in wüstite. J Phys Chem Solids 60:235–245

    Article  Google Scholar 

  • Morosin B (1970) Exchange Striction Effects in MnO and MnS. Phys Rev B 1:236–243

    Article  Google Scholar 

  • Nasu S (1994) High pressure Mössbauer spectroscopy using a diamond anvil cell. Hyperfine Inter 90:59–75

    Article  Google Scholar 

  • Pascarelli S, Mathon O, Aquilanti G (2004) New opportunities for high pressure X-ray absorption spectroscopy using dispersive optics. J All Comp 362:33–40

    Article  Google Scholar 

  • Rehr JJ, Albers RC (2000) Theoretical approaches to x-ray absorption fine structure. Rev Mod Phys 72:621–654

    Article  Google Scholar 

  • Richet P, Mao HK, Bell PM (1989) Bulk moduli of magnesiowustites from static compression measurements. J Geophys Res 94:3037–3045

    Article  Google Scholar 

  • Rooksby HP (1948) A note on the structure of nickel oxide at subnormal and elevated temperatures. Acta Cryst 1:226

    Article  Google Scholar 

  • Saito S, Nakahigashi K, Shimomura Y (1966) X-ray diffraction study on CoO. J Phys Soc Jpn 21:850–860

    Article  Google Scholar 

  • Shu J, Mao HK, Hu J, Fei Y, Hemley RJ (1998a) Single-crystal X-ray diffraction of wustite to 30 GPa hydrostatic pressure. N Jb Miner Abh 172:309–323

    Google Scholar 

  • Shu J, Mao HK, Hu J, Fei Y, Hemley RJ (1998b) High-pressure phase transition in magnesiowustite (Fe1−x Mg x )O. EOS Trans Am Geophys Union 79(17); Spring Meeting Suppl:M21A-01

    Google Scholar 

  • Singh AK, Mao HK, Shu J, Hemley RJ (1998) Estimation of single-crystal elastic moduli from polycrystalline X-ray diffraction at high pressure: application to FeO and iron. Phys Rev Lett 80:2157–2160

    Article  Google Scholar 

  • Smart JS, Greenwald S (1951) Crystal structure transitions in antiferromagnetic compounds at the Curie temperature. Phys Rev 82:113–114

    Article  Google Scholar 

  • Srivastava UC, Nigam HL (1973) X-ray absorption edge spectrometry (XAES) as applied to coordination chemistry. Coord Chem Rev 9:275–310

    Article  Google Scholar 

  • Struzhkin VV, Mao HK, Hu J, Schwoerer-Böhning M, Shu J, Hemley RJ, Sturhahn W, Hu MY, Alp EE, Eng P, Shen G (2001) Nuclear inelastic X-ray scattering of FeO to 48 GPa. Phys Rev Lett 87:255501

    Article  Google Scholar 

  • Sumino Y, Kumazawa M, Nishizawa O, Pluschkell W (1980) The elastic constants of single-crystal Fe1−x O, MnO and CoO, and the elasticity of stochiometric magnesiowuitite. J Phys Earth 28:475–495

    Google Scholar 

  • Wentzcovitch RM, Karki BB, Cococcioni M, deGironcoli S (2004) Thermoelastic properties of MgSiO3-Perovskite: insights on the nature of the Earth’s lower mantle. Phys Rev Lett 92:018501

    Article  Google Scholar 

  • Willis BTM, Rooksby HP (1953) Change of structure of ferrous oxide at low temperature. Acta Cryst 6:827–831

    Article  Google Scholar 

  • Yagi T, Suzuki T, Akimoto SI (1985) Compression of wustite (Fe0.98O) to 120 GPa. J Geophys Res 90:8784–8788

    Article  Google Scholar 

  • Yoo CS, Maddox B, Klepeis J-HP, Iota V, Evans W, McMahan A, Hu MY, Chow P, Somayazulu M, Häusermann D, Scalettar RT, Pickett WE (2005) First-order isostructural Mott transition in highly compressed MnO. Phys Rev Lett 94:115502

    Article  Google Scholar 

  • Zabinsky SI, Rehr JJ, Ankudinov A, Albers RC, Eller MJ (1995) Multiple-scattering calculations of x-ray-absorption spectra. Phys Rev B 52:2995–3009

    Article  Google Scholar 

  • Zha CS, Mao HK, Hemley RJ (2000) Elasticity of MgO and a primary pressure scale to 55 GPa. Proc Natl Acad Sci USA 97:13494–13499

    Article  Google Scholar 

Download references

Acknowledgement

This study was partly supported by DFG, RFBR, Russian Federation Government support of the leading scientific schools, Swedish Research council (VR), and CNPq (Brazil). The authors would also like to acknowledge G. Hermannsdorfer and H. Fischer for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Innokenty Kantor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kantor, I., Dubrovinsky, L., McCammon, C. et al. Pressure-induced phase transition in Mg0.8Fe0.2O ferropericlase. Phys Chem Minerals 33, 35–44 (2006). https://doi.org/10.1007/s00269-005-0052-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-005-0052-z

Keywords

Navigation