Skip to main content
Log in

Crystal structure of meteoritic schreibersites: determination of absolute structure

  • Original papers
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Minerals of the schreibersite–nickelphosphide series (Fe,Ni)3P crystallize in the non-centrosymmetric space group \(I\bar 4\). As a consequence, they can possess two different spatial arrangements of the constituting atoms within the unit cell, related by the inversion symmetry operation. Here, we present the crystal structure refinements from single crystal X-ray diffraction data for schreibersite grains from iron meteorites Acuña, Carlton, Hex River Mts. (three different crystals), Odessa (two different crystals), Sikhote Alin, and Toluca aiming for the determination of the absolute structure of the examined crystals. The crystals studied cover the composition range from ~58 mol% to ~80 mol% Fe3P end-member. Unit-cell parameter a and volume of the unit cell V, as well as certain topological structural parameters tightly correlate with Fe3P content. Unit-cell parameter c, on the other hand, does not show such strong correlation. Eight of the nine crystal structure refinements allowed unambiguous absolute structure assignment. The single crystal extracted from Toluca is, however, of poor quality and consequently the structure refinement did not provide as good results as the rest of the materials. Also, this crystal has only weak inversion distinguishing power to provide unequivocal absolute structure determination. Six of the eight unambiguous absolute structure determinations indicated inverted atomic arrangement compared to that reported in earlier structure refinements (here called standard). Only two grains, one taken from Odessa iron and the other from the Hex River Mts. meteorite, reveal the dominance of standard crystal structure setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altomare A, Cascarano G, Giacovazzo C, Guagliardi A, Burla MC, Polidori G, Camalli M (1994) SIR92—a program for automatic solution of crystal structures by direct methods. J Appl Cryst 27:435

    Article  Google Scholar 

  • Aronsson B (1955) The crystal structure of Ni3P. (Fe3P-Type). Acta Chem Scand 9:137–140

    Google Scholar 

  • Blessing RH (1997) Outlier treatment in data merging. J Appl Cryst 30:421–426

    Article  Google Scholar 

  • Brearley AJ, Jones RH (1998) Chondritic meteorites. In: Papike JJ (ed) Planetary materials, reviews in Mineralogy, vol 36. Mineralogical Society of America, Washington, pp 3-1–3-398

  • Buchwald VF (1975) Handbook of iron meteorites, vol 1: iron meteorites in general. University of California Press, Berkeley

    Google Scholar 

  • Coppens P (1970)The evaluation of absorption and extinction in single crystal structure analysis. In: Ahmed FR, Hall SR, Huber CP (eds) Crystallographic computing. Munksgaard, Copenhagen, pp 255–270

    Google Scholar 

  • Crystal Impact (2001) DIAMOND—visual crystal structure information system. Version 2.1e. Crystal Impact, Bonn, Germany

  • Doenitz FD (1968) Die Kristallstruktur des Meteoritenminerals Rhabdit. Naturwiss 55:387

    Article  Google Scholar 

  • Doenitz FD (1970) Die Kristallstruktur des meteoritischen Rhabdits (Fe, Ni)3P. Zeit Kristall 131:222–236

    Google Scholar 

  • Enraf-Nonius (1989) CAD-4 Software. Version 5.0. Enraf-Nonius, Delft

    Google Scholar 

  • Farrugia LJ (1999) WinGX suite for small molecule single-crystal crystallography. J Appl Cryst 32:837–838

    Article  Google Scholar 

  • Flack HD (1983) On enantiomorph-polarity estimation. Acta Cryst A 39:876–881

    Article  Google Scholar 

  • Flack HD, Bernardinelli G (1999) Absolute structure and absolute configuration. Acta Cryst A 55:908–915

    Article  Google Scholar 

  • Flack HD, Bernardinelli G (2000) Reporting and evaluating absolute-structure and absolute-configuration determinations. J Appl Cryst 33:1143–1148

    Article  Google Scholar 

  • Hamilton WC (1965) Significance tests on the crystallographic R factor. Acta Cryst 18:502–510

    Article  CAS  Google Scholar 

  • Jones PG (1984a) The determination of absolute structure. I. Some experiences with Rogers η refinement. Acta Cryst A 40:660–662

    Article  Google Scholar 

  • Jones PG (1984b) The determination of absolute structure. II. Absolute configuration from the Cambridge Crystallographic Data Centre files for 1982. Acta Cryst A 40:663–668

    Article  Google Scholar 

  • Larsson E (1965) An X-ray investigation of the Ni–P system and the crystal structures of NiP and NiP2. Arkiv för Kemi 23:335–365

    Google Scholar 

  • Liu H-p, James P, Broddefalk A, Andersson Y, Granberg P, Eriksson O (1998) Structural and magnetic properties of (Fe1-xCo x )3P compounds: experiment and theory. J Magn Magn Mater 189:69–82

    Article  Google Scholar 

  • Mittlefehldt DW, McCoy TJ, Goodrich CA, Kracher A (1998) Non-chondritic meteorites from asteroidal bodies. In Papike JJ (ed) Planetary materials, reviews in mineralogy, vol 36. Mineralogical Society of America, Washington, pp 4-1–4-195

  • Moretzki O, Doering Th, Geist V, Morgenroth W, Wendschuh M (2003a) Crystal structure of iron nickel phosphide, Fe1.7Ni1.3P, a Shreibersite extracted from Canyon Diablo meteorite. Zeit Kristall New Crystal Struct 218:391–392

    Google Scholar 

  • Moretzki O, Doering Th, Geist V, Morgenroth W, Wendschuh M (2003b) Crystal structure of iron nickel phosphide, Fe1.65Ni1.35P, a Rhabdite extracted from Morasko meteorite. Zeit Kristall New Crystal Structures 218:393–394

    Google Scholar 

  • Moretzki O, Doering Th, Geist V, Morgenroth W, Wendschuh M (2003c) Crystal structure of iron nickel phosphide, Fe1.8Ni1.2P, a Schreibersite extracted from Orange River meteorite. Zeit Kristall, New Crystal Structures 218:395–396

    Google Scholar 

  • Nonius (1997–2000) COLLECT. Nonius BV, Delft

    Google Scholar 

  • Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. In: Carter CW Jr, Sweet RM (eds) Methods in enzymology. Macromolecular crystallography A, vol 276. Academic, San Diego, pp 307–326

  • Papike JJ, Ryder G, Shearer CK (1998) Lunar samples. In: Papike JJ (ed) Planetary materials, reviews in mineralogy, vol 36. Mineralogical Society of America, Washington, pp 5-1–5-234

  • Petříček V, Dušek M (2000) JANA2000. Institute of Physics of the Czech Academy of Science, Czech Republic

    Google Scholar 

  • Rogers D (1981) On the application of Hamilton’s ratio test to the assignment of absolute configuration and an alternative test. Acta Cryst A 37:734–741

    Article  Google Scholar 

  • Rundqvist S (1962) X-ray investigations of the ternary system Fe–B–P. Acta Chem Scand 16:1–19

    Google Scholar 

  • Rundqvist S, Hassler E, Lundvik L (1962) Refinement of the Ni3P structure. Acta Chem Scand 16:242–243

    Google Scholar 

  • Sheldrick GM (1997) SHELX97. Programs for Crystal Structure Analysis. Release 97-2. Institut für Anorganische Chemie, Universität Göttingen, Germany

  • Skála R, Drábek M (2000) Variation of unit-cell dimensions of experimentally synthesized members of Fe3P-Ni3P solid solution (abstract#1564). In: 31st lunar and planet science conference. CD-ROM

  • Skála R, Drábek M (2003) Nickelphosphide from the Vicenice octahedrite: Rietveld crystal structure refinement of synthetic analogue. Mineral Mag 67:783–792

    Article  Google Scholar 

  • Skála R, Frýda J (1996) Schreibersite from the Vicenice iron: Rietveld crystal structure refinement—a preliminary report. In: 27th lunar and planet science conference. pp 1211–1212

Download references

Acknowledgements

The research has been supported by the grants of the Science Foundation of the Czech Republic (GAČR) No. 205/98/0655 and No. 205/02/1101. We are also grateful to Marcela Bukovanská of the Natural History Museum of the National Museum in Prague, Gero Kurat of Naturhistorisches Museum in Vienna and Yevgeny Plyaskov of Prague who provided material for single-crystal structure study. Václav Petříček of the Institute of Physics, Czech Academy of Science, Prague, kindly carried out transformations of intensity files to correspond to the invariant choice of the coordinate system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Skála.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skála, R., Císařová, I. Crystal structure of meteoritic schreibersites: determination of absolute structure. Phys Chem Minerals 31, 721–732 (2005). https://doi.org/10.1007/s00269-004-0435-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-004-0435-6

Keywords

Navigation