Skip to main content

Advertisement

Log in

Maximizing Conservation and Production with Intensive Forest Management: It’s All About Location

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Functional zoning has been suggested as a way to balance the needs of a viable forest industry with those of healthy ecosystems. Under this system, part of the forest is set aside for protected areas, counterbalanced by intensive and extensive management of the rest of the forest. Studies indicate this may provide adequate timber while minimizing road construction and favoring the development of large mature and old stands. However, it is unclear how the spatial arrangement of intensive management areas may affect the success of this zoning. Should these areas be agglomerated or dispersed throughout the forest landscape? Should managers prioritize (a) proximity to existing roads, (b) distance from protected areas, or (c) site-specific productivity? We use a spatially explicit landscape simulation model to examine the effects of different spatial scenarios on landscape structure, connectivity for native forest wildlife, stand diversity, harvest volume, and road construction: (1) random placement of intensive management areas, and (2–8) all possible combinations of rules (a)–(c). Results favor the agglomeration of intensive management areas. For most wildlife species, connectivity was the highest when intensive management was far from the protected areas. This scenario also resulted in relatively high harvest volumes. Maximizing distance of intensive management areas from protected areas may therefore be the best way to maximize the benefits of intensive management areas while minimizing their potentially negative effects on forest structure and biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bergeron Y, Gauthier S, Kafka V, Lefort P, Lesieur D (2001) Natural fire frequency for the eastern Canadian boreal forest: consequences for sustainable forestry. Can J For Res 31:384–391

    Article  Google Scholar 

  • Betts MG, Forbes GJ (eds) (2005) Forest management guidelines to protect native biodiversity in the Greater Fundy ecosystem. University of New Brunswick, Moncton, p 127

    Google Scholar 

  • Bonneau J, Kneeshaw DD (2005) Le choix des forêts représentatives pour les aires de conservation [The selection of representative forest for conservation areas]. L’Aubelle 149:29–30

    Google Scholar 

  • Boudreault C, Bergeron Y, Gauthier S, Drapeau P (2002) Bryophyte and lichen communities in mature to old-growth stands in eastern boreal forests of Canada. Can J For Res 32:1080–1093

    Article  Google Scholar 

  • Bunn AG, Urban DL, Keitt TH (2000) Landscape connectivity: a conservation application of graph theory. J Environ Manage 59:265–278

    Article  Google Scholar 

  • Burkey TV (1989) Extinction in nature reserves: the effect of fragmentation and the importance of migration between reserve fragments. Oikos 55:75–81

    Article  Google Scholar 

  • Burkey TV (1995) Extinction rates in archipelagos: implications for populations in fragmented habitats. Conserv Biol 9:527–541

    Article  Google Scholar 

  • Burkey TV (1997) Metapopulation extinction in fragmented landscapes: using bacteria and protozoa communities as model ecosystems. Am Nat 150:568–591

    Article  CAS  Google Scholar 

  • Chapin TG, Harrison DJ, Katnik DD (1998) Influence of landscape pattern on habitat use by American marten in an industrial forest. Conserv Biol 12:1327–1337

    Article  Google Scholar 

  • Cheveau M (2010) Effets multiscalaires de la fragmentation de la forêt par l’aménagement forestier sur la martre d’Amérique en forêt boréale de l’est du Canada. Thèse, Université du Québec en Abitibi-Témiscamingue

  • Coffin AW (2007) From roadkill to road ecology: a review of the ecological effects of roads. J Transp Geogr 15:396–406

    Article  Google Scholar 

  • Côté P, Tittler R, Messier C, Kneeshaw DD, Fall A, Fortin MJ (2010) Comparing different forest zoning options for landscape-scale management of the boreal forest: possible benefits of the TRIAD. For Ecol Manage 259:418–427

    Article  Google Scholar 

  • D’Eon RG, Hebert D, Viszlai SL (2004) An ecological rationale for sustainable forest management concepts at Riverside Forest Products, southcentral British Columbia. For Chron 80:341–348

    Article  Google Scholar 

  • Desponts M, Desrochers A, Bélanger L, Huot J (2002) Structure de sapinières aménagées et anciennes du massif des Laurentides (Québec) et diversité des plantes invasculaires. Can J For Res 32:2077–2093

    Article  Google Scholar 

  • Desponts M, Brunet G, Bélanger L, Bouchard M (2004) The eastern boreal old-growth balsam fir forest: a distinct ecosystem. Can J Bot 82:830–849

    Article  Google Scholar 

  • Drapeau P, Leduc A, Giroux J-F, Savard J-P, Bergeron Y, Vickery WL (2000) Landscape scale disturbances and changes in bird communities of North American eastern boreal mixed-wood forests. Ecol Monogr 70:423–444

    Article  Google Scholar 

  • Drapeau P, Leduc A, Bergeron Y, Gauthier S, Savard J-P (2003) Les communautés d’oiseaux des vieilles forêts de la pessière à mousses de la ceinture d’argile : Problèmes et solutions face à l’aménagement forestier. For Chron 79:531–540

    Article  Google Scholar 

  • Fahrig L, Rytwinski T (2009) Effects of roads on animal abundance: an empirical review and synthesis. Ecol Soc 14:21

    Google Scholar 

  • Fall A, Fall J (2001) A domain-specific language for models of landscape dynamics. Ecol Model 141:1–18

    Article  Google Scholar 

  • Fall A, Fortin MJ, Manseau M, O’Brien D (2007) Spatial graphs: principles and applications for habitat connectivity. Ecosystems 10:448–461

    Article  Google Scholar 

  • Fenton N, Bergeron Y (2008) Does time or habitat make old-growth forests species rich? Bryophyte richness in boreal Picea mariana forests. Biol Conserv 141:1389–1399

    Article  Google Scholar 

  • Fortier J, Messier C (2006) Are chemical or mechanical treatments more sustainable for forest vegetation management in the context of the TRIAD? For Chron 82:806–818

    Article  Google Scholar 

  • Galpern P, Manseau M, Fall A (2011) Patch-based graphs of landscape connectivity: a guide to construction, analysis and application for conservation. Biol Conserv 144:44–55

    Article  Google Scholar 

  • Geboers AM, Nol E (2009) Habitat selection of least flycatchers includes deciduous regeneration in pine plantations. Wilson J Ornithol 121:411–415

    Article  Google Scholar 

  • Hanski I, Ovaskainen O (2000) The metapopulation capacity of a fragmented landscape. Nature 404:755–758

    Article  CAS  Google Scholar 

  • Holderegger R, Di Giulio M (2010) The genetic effects of roads: a review of empirical evidence. Basic Appl Ecol 11:522–531

    Article  Google Scholar 

  • Imbeau L, Savard J-P, Gagnon R (2000) Comparing bird assemblages in successional black spruce stands originating from fire and logging. Can J Zool 77:1850–1860

    Article  Google Scholar 

  • Imbeau L, Mönkkönen M, Desrochers A (2001) Long-term effects of forestry on birds of the eastern Canadian boreal forests: a comparison with Fennoscandia. Conserv Biol 15:1151–1162

    Article  Google Scholar 

  • Jaeger JAG (2000) Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Lands Ecol 15:115–130

    Article  Google Scholar 

  • James PM, Fortin MJ, Fall A, Kneeshaw D, Messier C (2007) The effects of spatial legacies following shifting management practices and fire on boreal forest age structure. Ecosystem 10:1261–1277  

    Article  Google Scholar 

  • Kindlmann P, Burel F (2008) Connectivity measures: a review. Lands Ecol 23:879–890

    Google Scholar 

  • Lohmus P, Lohmus A (2009) The importance of representative inventories for lichen conservation assessments: the case of Cladonia norvegica and C. parasitica. Lichenologist 41:61–67

    Article  Google Scholar 

  • Maiorano L, Falcucci A, Boitani L (2008) Size-dependent resistance of protected areas to land-use change. Proc Biol Sci 275:1297–1304

    Article  Google Scholar 

  • Messier C, Tittler R, Kneeshaw DD, Gélinas N, Paquette A, Berninger K, Rheault H, Meek P, Beaulieu N (2009) TRIAD zoning in Quebec: experiences and results after 5 years. For Chron 85:885–896

    Article  Google Scholar 

  • Ministère de l’Environnement (1999) Aires protégées au Québec, Contexte, constats et enjeux [Protected areas in Quebec: context, observations, and issues]. Gouvernement du Québec, Québec, 64 p

  • Minor E, Urban DL (2008) A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv Biol 22:297–307

    Article  Google Scholar 

  • Mortensen DA, Rauschert ES, Nord AN, Jones BP (2009) Forest roads facilitate the spread of invasive plants. Invasive Plant Sci Manage 2:191–199

    Article  Google Scholar 

  • Nitschke CR, Innes JL (2008) Integrating climate change into forest management in South-Central British Columbia: an assessment of landscape vulnerability and development of a climate-smart framework. For Ecol Manage 256:313–327

    Article  Google Scholar 

  • Ovaskainen O (2002) Long-term persistence of species and the SLOSS problem. J Theor Biol 218:419–433

    Article  Google Scholar 

  • Paquette A, Messier C (2009) The role of plantations in managing the world’s forests in the Anthropocene. Front Ecol Environ 8:27–34

    Article  Google Scholar 

  • Park A, Wilson ER (2007) Beautiful plantations: can intensive silviculture help Canada to fulfill ecological and timber production objectives? For Chron 83:825–839

    Article  Google Scholar 

  • Ranius T, Roberge J-M (2011) Effects of intensified forestry on the landscape-scale extinction risk of dead wood dependent species. Biodivers Conserv 20:2867–2882

    Article  Google Scholar 

  • Redelsheimer CL (1996) Enhancing forest management through public involvement: an industrial landowner’s experience. J For 94:24–27

    Google Scholar 

  • Saura S, Rubio L (2010) A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 33:523–537

    Google Scholar 

  • Seymour RS, Hunter ML (1992) New forestry in eastern spruce–fir forests: principles and applications to Maine. Maine Agric Exp State Misc Publ 716:36

    Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  • Simberloff DS, Abele LG (1976) Island biogeography theory and conservation practice. Sci 191:285–286

    Article  CAS  Google Scholar 

  • Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–573

    Article  Google Scholar 

  • Thompson ID, Baker JA, Ter-Mikaelian M (2003) A review of the long-term effects of post-harvest silviculture on vertebrate wildlife, and predictive models, with an emphasis on boreal forests in Ontario, Canada. For Ecol Manage 177:441–469

    Article  Google Scholar 

  • Tittler R, Messier C, Fall A (2012) Concentrating anthropogenic disturbance to balance ecological and economic values: applications to forest management. Ecol Appl 22:1268–1277

    Article  Google Scholar 

  • Van Wagner C (1978) Age-class distribution and the forest fire cycle. Can J For Res 8:220–227

    Article  Google Scholar 

  • Villard M-A, Haché S (2012) Conifer plantations consistently act as barriers to movement in a deciduous forest songbird: a translocation experiment. Biol Conserv 155:33–37

    Article  Google Scholar 

  • Woodroffe R, Ginsberg JR (1998) Edge effects and the extinction of populations inside protected areas. Science 280:2126–2128

    Article  CAS  Google Scholar 

  • Yezerinac S, Moola FM (2006) Conservation status and threats to species associated with old-growth forests within the range of the Northern Spotted Owl (Strix occidentalis caurina) in British Columbia, Canada. Biodiversity 6:3–9

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Programme de financement de la recherche et développement en aménagement forestier (Financial Program for Forest Management Research and Development) administered by the Ministère des resources naturelles et de la faune (Ministry of Natural Resources and Wildlife; MRNF) of the province of Quebec, Canada, and the Programme de mise en valeur des ressources du milieu forestier (Program for the Development of Forest Resources), administered by the MRNF and jointly funded by Resolute Paper, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Tittler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 366 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tittler, R., Filotas, É., Kroese, J. et al. Maximizing Conservation and Production with Intensive Forest Management: It’s All About Location. Environmental Management 56, 1104–1117 (2015). https://doi.org/10.1007/s00267-015-0556-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-015-0556-3

Keywords

Navigation