Skip to main content

Advertisement

Log in

More of the Same: High Functional Redundancy in Stream Fish Assemblages from Tropical Agroecosystems

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

In this study, we investigated the influence of environmental variables (predictor variables) on the species richness, species diversity, functional diversity, and functional redundancy (response variables) of stream fish assemblages in an agroecosystem that harbor a gradient of degradation. We hypothesized that, despite presenting high richness or diversity in some occasions, fish communities will be more functionally redundant with stream degradation. Species richness, species diversity, and functional redundancy were predicted by the percentage of grass on the banks, which is a characteristic that indicates degraded conditions, whereas the percentage of coarse substrate in the stream bottom was an important predictor of all response variables and indicates more preserved conditions. Despite being more numerous and diverse, the groups of species living in streams with an abundance of grass on the banks perform similar functions in the ecosystem. We found that riparian and watershed land use had low predictive power in comparison to the instream habitat. If there is any interest in promoting ecosystem functions and fish diversity, conservation strategies should seek to restore forests in watersheds and riparian buffers, protect instream habitats from siltation, provide wood debris, and mitigate the proliferation of grass on stream banks. Such actions will work better if they are planned together with good farming practices because these basins will continue to be used for agriculture and livestock in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bareswill R, Golla B, Streloke M, Schulz R (2013) Entry and toxicity of organic pesticides and copper in vineyard streams: erosion rills jeopardise the efficiency of riparian buffer strips. Agric Ecosyst Environ 146:81–92. doi:10.1016/j.agee.2013.05.007

    Article  Google Scholar 

  • Beaumord AC, Petrere M (1994) Comunidades de peces del rio Manso, Chapada dos Guimarães, MT, Brasil. Acta Biol Venez 15:21–35

    Google Scholar 

  • Bellwood DR, Hoey AS, Ackerman JL, Depczynski M (2006) Coral bleaching, reef fish community phase shifts and the resilience of coral reefs. Glob Change Biol 12:1587–1594. doi:10.1111/j.1365-2486.2006.01204.x

    Article  Google Scholar 

  • Bunn SE, Davies PM, Kellaway DM (1997) Contributions of sugar cane and invasive pasture grass to the aquatic food web of a tropical lowland stream. Mar Freshw Res 48:173–179. doi:10.1071/MF96055

    Article  CAS  Google Scholar 

  • Burcher CL, McTammany ME, Benfield EF, Helfman GS (2008) Fish assemblage responses to forest cover. Environ Manag 41:336–346. doi:10.1007/s00267-007-9049-3

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087. doi:10.1111/j.1365-2664.2011.02048.x

    Article  Google Scholar 

  • Canfield DE, Glazer AN, Falkowski PG (2010) The evolution and future of earth’s nitrogen cycle. Science 330:192–196. doi:10.1126/science.1186120

    Article  CAS  Google Scholar 

  • Casatti L (2002) Alimentação dos peixes em um riacho do Parque Estadual Morro do Diabo, bacia do Alto Rio Paraná, sudeste do Brasil. Biota Neotrop 2:1–15. doi:10.1590/S1676-06032002000200012

    Article  Google Scholar 

  • Casatti L, Ferreira CP, Carvalho FR (2009) Grass-dominated stream sites exhibit low fish species diversity and dominance by guppies: an assessment of two tropical pasture river basins. Hydrobiologia 632:273–283. doi:10.1007/s10750-009-9849-y

    Article  Google Scholar 

  • Chan EKW, Zhang Y, Dudgeon D (2008) Arthropod ‘rain’ into tropical streams: the importance of intact riparian forest and influences of fish diets. Mar Freshw Res 59:653–660. doi:10.1071/MF07191

    Article  Google Scholar 

  • Conway GR (1987) The properties of agroecosystems. Agric Syst 24:95–117. doi:10.1016/0308-521X(87)90056-4

    Article  Google Scholar 

  • Cruz BB, Miranda LE, Cetra M (2013) Links between riparian landcover, instream environment and fish assemblages in headwater streams of south-eastern Brazil. Ecol Fresh Fish 22:607–616. doi:10.1111/eff.12065

    Article  Google Scholar 

  • de Bello F, Lepš J, Lavorel S, Moretti M (2007) Importance of species abundance for assessment of trait composition: an example based on pollinator communities. Community Ecol 8:163–170. doi:10.1556/ComEc.8.2007.2.3

    Article  Google Scholar 

  • Development Core Team R (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Austria

    Google Scholar 

  • Devictor V, Julliard R, Jiguet F (2008) Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117:507–514. doi:10.1111/j.2008.0030-1299.16215.x

    Article  Google Scholar 

  • Diana M, Allan JD, Infante D (2006) The influence of physical habitat and land use on stream fish assemblages in southeastern Michigan. Am Fish Soc Symp 48:359–374

    Google Scholar 

  • Díaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655. doi:10.1016/S0169-5347(01)02283-2

    Article  Google Scholar 

  • Dolédec S, Statzner B (2010) Responses of freshwater biota to human disturbances: contribution of J-NABS to developments in ecological integrity assessments. J N Am Benth Soc 29:286–311. doi:10.1899/08-090.1

    Article  Google Scholar 

  • ESRI (2008) ArcGIS Professional GIS for the desktop, version 9.3. Redlands

  • Feld CK (2013) Response of three lotic assemblages to riparian and catchment-scale land use: implications for designing catchment monitoring programs. Freshwater Biol 58:715–729. doi:10.1111/fwb.12077

    Article  Google Scholar 

  • Flynn DFB, Gogol-Prokurat M, Nogeire T, Molinari N, Richers BT, Lin BB, Simpson N, Mayfield MM, DeClerck F (2009) Loss of functional diversity under land use intensification across multiple taxa. Ecol Lett 12:22–33. doi:10.1111/j.1461-0248.2008.01255.x

    Article  Google Scholar 

  • Foley JA et al (2007) Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front Ecol Environ 5:25–32. doi:10.1890/1540-9295(2007)5[25:ARFDAL]2.0.CO;2

    Article  Google Scholar 

  • Foley JA et al (2012) Solutions for a cultivated planet. Nature 478:337–342. doi:10.1038/nature10452

    Article  Google Scholar 

  • Froese R, Pauly D (2013) FishBase. Available from http://www.fishbase.org. Accessed December 2014

  • Fukui D, Murakami M, Nakano S, Aoi T (2006) Effect of emergent aquatic insects on bat foraging in a riparian forest. J Anim Ecol 75:1252–1258. doi:10.1111/j.1365-2656.2006.01146.x

    Article  Google Scholar 

  • Gonçalves P, Alcobia S, Simões L, Santos-Reis M (2012) Effects of management options on mammal richness in a Mediterranean agro-silvo-pastoral system. Agric Syst 85:383–395. doi:10.1007/s10457-011-9439-7

    Article  Google Scholar 

  • Graça WJ, Pavanelli CS (2007) Peixes da planície de inundação do alto rio Paraná e áreas adjacentes. Editora da Universidade de Maringá, Maringá

    Google Scholar 

  • Harding JS, Benfield EF, Bolstad PV, Helfman GS, Jones EBD III (1998) Stream biodiversity: the ghost of land use past. Proc Natl Acad Sci USA 95:14843–14847. doi:10.1073/pnas.95.25.14843

    Article  CAS  Google Scholar 

  • IPT (1999) Diagnóstico da situação atual dos recursos hídricos e estabelecimento de diretrizes técnicas para a elaboração do Plano da Bacia Hidrográfica do São José dos Dourados—minuta. Comitê da Bacia Hidrográfica do São José dos Dourados e Fundo Estadual de Recursos Hídricos

  • Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74:2204–2214. doi:10.2307/1939574

    Article  Google Scholar 

  • Jensen JR (2000) Remote sensing of the environment: an earth resource perspective. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Kasyak PF (2001) Maryland biological stream survey: sampling manual. Maryland Department of Natural Resources, Monitoring and Non-tidal Assessment Division, Annapolis

    Google Scholar 

  • Kautza A, Sullivan SMP (2012) Relative effects of local- and landscape-scale environmental factors on stream fish assemblages: evidence from Idaho and Ohio, USA. Fundam Appl Limnol 180:259–270. doi:10.1127/1863-9135/2012/0282

    Article  Google Scholar 

  • Krumbein WC, Sloss LL (1963) Stratigraphy and sedimentation. Freeman, San Francisco

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier Science, Amsterdam

    Google Scholar 

  • Lévêque C, Oberdorff T, Paugy D, Stiassny MLJ, Tedesco PA (2008) Global diversity of fish (Pisces) in freshwater. Hydrobiologia 595:545–567. doi:10.1007/978-1-4020-8259-7_53

    Article  Google Scholar 

  • Lorion CM, Kennedy BP (2009) Riparian forest buffers mitigate the effects of deforestation on fish assemblage in tropical headwater streams. Ecol Appl 19:468–479. doi:10.1890/08-0050.1

    Article  Google Scholar 

  • Marques LC, Ceneviva-Bastos M, Casatti L (2013) Progressive recovery of a tropical deforested stream community after a flash flood. Acta Limnol Bras 25:111–123. doi:10.1590/S2179-975X2013000200002

    Article  Google Scholar 

  • Martin-Smith KM (1998) Relationships between fishes and habitat in rainforest streams in Sabah, Malaysia. J Fish Biol 52:458–482. doi:10.1111/j.1095-8649.1998.tb02010.x

    Google Scholar 

  • Mayfield MM, Bonser SP, Morgan JW, Aubin I, McNamara S, Vesk PA (2010) What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Global Ecol Biogeogr 19:423–431. doi:10.1111/j.1466-8238.2010.00532.x

    Google Scholar 

  • Monbeig P (1998) Pioneiros e fazendeiros de São Paulo. Hucitec, São Paulo

    Google Scholar 

  • Mouchet MA, Villéger S, Mason NWH, Mouillot D (2010) Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol 24:867–876. doi:10.1111/j.1365-2435.2010.01695.x

    Article  Google Scholar 

  • Nalon MA, Matto ISA, Franco GADC (2008) Meio físico e aspectos da vegetação. Rodrigues RR, Bononi VLR (orgs) Diretrizes para conservação e restauração da biodiversidade no Estado de São Paulo. Instituto de Botânica, São Paulo, pp 12–21

    Google Scholar 

  • Nislow KH (2005) Forest change and stream fish habitat: lessons from ‘Olde’ and New England. J Fish Biol 67B:186–204. doi:10.1111/j.0022-1112.2005.00913.x

    Article  Google Scholar 

  • Paula FR, Ferraz SFB, Gerhard P, Vettorazzi CA, Ferreira A (2011) Large wood debris input and its influence on channel structure in agricultural lands of southeast Brazil. Environ Manag 48:750–763. doi:10.1007/s00267-011-9730-4

    Article  Google Scholar 

  • Paula FR, Gerhard P, Wenger SJ, Ferreira A, Vettorazzi CA, Ferraz SFB (2013) Influence of forest cover on in-stream large wood in a agriculture landscape of southeastern Brazil: a multi-scale analysis. Landsc Ecol 28:13–27. doi:10.1007/s10980-012-9809-1

    Article  Google Scholar 

  • Pavoine S, Bonsall MB (2011) Measuring biodiversity to explain community assembly: a unified approach. Biol Rev 86:702–812. doi:10.1111/j.1469-185X.2010.00171.x

    Article  Google Scholar 

  • Pavoine S, Vallet J, Dufort A, Gachet S, Daniel H (2009) On the challenge of treating various types of variables: application for improving the measurement of functional diversity. Oikos 118:391–402. doi:10.1111/j.1600-0706.2008.16668.x

    Article  Google Scholar 

  • Pease AA, González-Díaz AA, Rodiles-Hernández R, Winemiller KO (2012) Functional diversity and trait–environment relationships of stream fish assemblages in a large tropical catchment. Freshw Biol 57:1060–1075. doi:10.1111/j.1365-2427.2012.02768.x

    Article  Google Scholar 

  • Pillar VD, Blanco CC, Müller SC, Sosinski EE, Joner F, Duarte LDS (2013) Functional redundancy and stability in plant communities. J Veg Sci 24:963–974. doi:10.1111/jvs.12047

    Article  Google Scholar 

  • Pracheil BM, McIntyre PB, Lyons JD (2013) Enhancing conservation of large-river biodiversity by accounting for tributaries. Front Ecol Environ 11:124–128. doi:10.1890/120179

    Article  Google Scholar 

  • Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob Biogeochem Cycles 22:GB1003. doi:10.1029/2007GB002947

  • Rangel TF, Diniz-Filho JAF, Bini LM (2010) SAM: a comprehensive application for spatial analysis in macroecology. Ecography 33:46–50. doi:10.1111/j.1600-0587.2009.06299.x

    Article  Google Scholar 

  • Romero RM, Casatti L (2012) Identification of key microhabitats for fish assemblages in tropical Brazilian savanna streams. Int Rev Hydrobiol 97:526–541. doi:10.1002/iroh.201111513

    Article  Google Scholar 

  • Sazima I (1986) Similarities in feeding behaviour between some marine and freshwater fishes in two tropical communities. J Fish Biol 29:53–65. doi:10.1111/j.1095-8649.1986.tb04926.x

    Article  Google Scholar 

  • Silva AM, Casatti L, Álvares CA, Leite AM, Martinelli LA, Durrant SF (2007) Soil loss risk and habitat quality in streams of a meso-scale river basin. Sci Agric 64:336–343. doi:10.1590/S0103-90162007000400004

    Google Scholar 

  • Soares-Filho B, Rajão R, Macedo M, CarneiroA Costa W, Coe M, Rodrigues H, Alencar A (2014) Cracking Brazil’s forest code. Science 344:363–364. doi:10.1126/science.1246663

    Article  CAS  Google Scholar 

  • Sthraler AN (1957) Quantitative analysis of watershed geomorphology. Trans Am Geophys Union 38:913–920

    Article  Google Scholar 

  • Strayer DL, Beighley RE, Thompson LC, Brooks S, Nilsson DC, Pinay G, Naiman RJ (2003) Effects of land cover on stream ecosystems: roles of empirical models and scaling issues. Ecosystems 6:407–423. doi:10.1007/s10021-002-0170-0

    Article  Google Scholar 

  • Sweeney BW, Newbold JD (2014) Streamside forest buffer width needed to protect stream water quality, habitat, and organisms: a literature review. JAWRA 50:560–584. doi:10.1111/jawr.12203

    Google Scholar 

  • Teels BM, Rewa AA, Myers J (2006) Aquatic condition response to riparian buffer establishment. Wildlife Soc B 34:927–935. doi:10.2193/0091-7648(2006)34[927:ACRTRB]2.0.CO;2

    Article  Google Scholar 

  • ter Braak CJF, Smilauer P (2012) CANOCO reference manual and user’s guide: software for ordination (version 5). Microcomputer Power, New York

    Google Scholar 

  • Teresa FB, Casatti L (2012) Influence of forest cover and mesohabitat types on functional and taxonomic diversity of fish communities in Neotropical lowland streams. Ecol Freshw Fish 21:433–442. doi:10.1111/j.1600-0633.2012.00562.x

    Article  Google Scholar 

  • Teresa FB, Casatti L (2013) Development of habitat suitability criteria for Neotropical stream fishes and an assessment of their transferability to streams with different conservation status. Neotrop Ichthyol 11:395–402. doi:10.1590/S1679-62252013005000009

    Article  Google Scholar 

  • Tilman D, Lehman CL, Thomson KT (1997) Plant diversity and ecosystem productivity: theoretical considerations. Proc Natl Acad Sci USA 94:1857–1861. doi:10.1073/pnas.94.5.1857

    Article  CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677. doi:10.1038/nature01014

    Article  CAS  Google Scholar 

  • Tscharntke T, Klein AM, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874. doi:10.1111/j.1461-0248.2005.00782.x

    Article  Google Scholar 

  • Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301. doi:10.1890/07-1206.1

    Article  Google Scholar 

  • Villéger Miranda JR, Hernández DF, Mouillot D (2010) Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecol Appl 20:1512–1522. doi:10.1890/09-1310.1

    Article  Google Scholar 

  • Walker PD, Wijnhoven S, Veld V (2013) Macrophyte presence and growth form influence macroinvertebrate community structure. Aquat Bot 104:80–87. doi:10.1016/j.aquabot.2012.09.003

    Article  Google Scholar 

  • Wang L, Lyons J, Kanehl P, Gatti R (1997) Influences of watershed land use on habitat quality and biotic integrity in Wisconsin streams. Fisheries 22:6–12. doi:10.1577/1548-8446(1997)022<0006:IOWLUO>2.0.CO;2

    Article  Google Scholar 

  • Watson DJ, Balon K (1984) Ecomorphological analysis of fish taxocenes in rainforest streams of northern Borneo. J Fish Biol 25:371–384. doi:10.1111/j.1095-8649.1984.tb04885.x

    Article  Google Scholar 

  • Woodward G et al (2012) Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science 336:1438–1440. doi:10.1126/science.1219534

    Article  CAS  Google Scholar 

  • Zeni JO, Casatti L (2014) The influence of habitat homogenization on the trophic structure of fish fauna in tropical streams. Hydrobiologia 726:259–270. doi:10.1007/s10750-013-1772-6

    Article  Google Scholar 

  • Zhu W, Wang S, Caldwell CD (2012) Pathways of assessing agroecosystem health and agroecosystem management. Acta Ecol Sin 32:9–17. doi:10.1016/j.chnaes.2011.11.001

    Article  Google Scholar 

  • Zobel M (1997) The relative role of species pools in determining plant species richness. An alternative explanation of species coexistence? Trends Ecol Evol 12:266–269. doi:10.1016/S0169-5347(97)01096-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank our colleagues from the Ichthyology Laboratory for their help during fieldwork, IBILCE-UNESP for the use of their facilities, IBAMA for the collecting license (001/2003), landowners for permission to conduct research on their properties, Francisco Langeani for fish identification, and Thiago G. Souza for help with the statistical analysis. Anonymous reviewers provided several suggestions that improved this manuscript. LC is supported by National Counsel of Technological and Scientific Development (CNPq 301755/2013-2); FBT by University Research and Scientific Production Support Program (PROBIP/UEG); JOZ, MDC, GLB, and MCB by São Paulo Research Foundation (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilian Casatti.

Appendix

Appendix

See Tables 5 and 6.

Table 5 Functional traits for each species
Table 6 Codes and abundance of fish species collected in 77 stream reaches

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casatti, L., Teresa, F.B., Zeni, J. et al. More of the Same: High Functional Redundancy in Stream Fish Assemblages from Tropical Agroecosystems. Environmental Management 55, 1300–1314 (2015). https://doi.org/10.1007/s00267-015-0461-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-015-0461-9

Keywords

Navigation