Skip to main content

Advertisement

Log in

Analyzing the Water Budget and Hydrological Characteristics and Responses to Land Use in a Monsoonal Climate River Basin in South China

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Hydrological models have been increasingly used by hydrologists and water resource managers to understand natural processes and human activities that affect watersheds. In this study, we use the physically based model, Soil and Water Assessment Tool (SWAT), to investigate the hydrological processes in the East River Basin in South China, a coastal area dominated by monsoonal climate. The SWAT model was calibrated using 8-year (1973–1980) record of the daily streamflow at the basin outlet (Boluo station), and then validated using data collected during the subsequent 8 years (1981–1988). Statistical evaluation shows that SWAT can consistently simulate the streamflow of the East River with monthly Nash–Sutcliffe efficiencies of 0.93 for calibration and 0.90 for validation at the Boluo station. We analyzed the model simulations with calibrated parameters, presented the spatiotemporal distribution of the key hydrological components, and quantified their responses to different land uses. Watershed managers can use the results of this study to understand hydrological features and evaluate water resources of the East River in terms of sustainable development and effective management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen RG (1986) A penman for all seasons. J Irrigation Drainage Eng ASCE 112(4):348–368

    Article  Google Scholar 

  • Allen RG, Jensen ME, Wright JL, Burman RD (1989) Operational estimates of reference evapotranspiration. Agron J 81(4):650–662

    Article  Google Scholar 

  • Arabi M, Frankenberger JR, Enge BA, Arnold JG (2008) Representation of agricultural conservation practices with SWAT. Hydrol Process 22(16):3042–3055. doi:10.1002/hyp.6890

    Article  Google Scholar 

  • Arnold JG, Allen PM (1999) Automated methods for estimating baseflow and ground water recharge from streamflow records. J Am Water Resour Assoc 35(2):411–424

    Article  Google Scholar 

  • Arnold JG, Allen PM, Muttiah R, Bernhardt G (1995) Automated baseflow separation and recession analysis techniques. Ground Water 33:1010–1018

    Article  CAS  Google Scholar 

  • Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment. Part 1. Model development. J Am Water Resour Assoc 34(1):73–89

    Article  CAS  Google Scholar 

  • Beven KJ (2001) Rainfall-runoff modelling. Wiley, Chichester

    Google Scholar 

  • Borah DK, Bera M (2003) Watershed-scale hydrologic and nonpoint-source pollution models: review of applications. In: Annual Meeting of the American-Society-of-Agricultural-Engineers, Las Vegas, NV, 27–30 July 2003, pp 789–803

  • Bouraoui F, Benabdallah S, Jrad A, Bidoglio G (2004) Application of the SWAT model on the Medjerda River Basin (Tunisia). In: Workshop on sustainable catchment management, Nice, France, 25–30 April 2004, pp 497–507. doi:10.1016/j.pce.2005.07.004

  • Bradshaw CJA, Sodhi NS, Peh KSH, Brook BW (2007) Global evidence that deforestation amplifies flood risk and severity in the developing world. Glob Change Biol 13(11):2379–2395. doi:10.1111/j.1365-2486.2007.01446.x

    Article  Google Scholar 

  • Chen J, Chan SN (2007) Water resources sustainability in the East River in south China using water rights analysis package. In: Oxley L, Kulasiri D (eds) MODSIM 2007, New Zealand, December 2007. Modelling and Simulation Society of Australia, New Zealand, pp 1985–1991

    Google Scholar 

  • Chen J, Wu Y (2008) Exploring hydrological process features of the East River (Dongjiang) Basin in south China using vic and SWAT, vol 319. IAHS-AISH Publication, Wallingford, pp 116–123

    Google Scholar 

  • Chen J, Wu Y (2012) Advancing representation of hydrologic processes in the soil and water assessment tool (SWAT) through integration of the topographic model (TOPMODEL) features. J Hydrol 420–421:319–328. doi:10.1016/j.jhydrol.2011.12.022

    Article  Google Scholar 

  • Chow VT, Maidment DR, Mays LW (1988) Applied hydrology. McGraw-Hill, New York

    Google Scholar 

  • Chung SW, Gassman PW, Gu R, Kanwar RS (2002) Evaluation of epic for assessing tile flow and nitrogen losses for alternative agricultural management systems. Trans ASAE 45(4):1135–1146

    Google Scholar 

  • Cui W, Chen J, Wu YP, Wu YD (2007) An overview of water resources management of the Pearl River. Water Sci Technol Water Supply 7(2):101–113. doi:10.2166/ws.2007.045

    Article  Google Scholar 

  • Douglas-Mankin KR, Srinivasan R, Arnold JG (2010) Soil and water assessment tool (SWAT) model: current developments and applications. Trans ASABE 53(5):1423–1431

    CAS  Google Scholar 

  • Duan QY, Sorooshian S, Gupta V (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28(4):1015–1031

    Article  Google Scholar 

  • Gassman PW, Reyes MR, Green CH, Arnold JG (2007) The soil and water assessment tool: historical development, applications, and future research directions. Trans ASABE 50(4):1211–1250

    CAS  Google Scholar 

  • Green CH, van Griensven A (2008) Autocalibration in hydrologic modeling: using SWAT2005 in small-scale watersheds. Environ Model Softw 23(4):422–434. doi:10.1016/j.envsoft.2007.06.002

    Article  Google Scholar 

  • Guangdong Soil Survey Office (GSSO) (1993) Guangdong Soil. Science Press, Beijing

    Google Scholar 

  • Hao FH, Zhang XS, Yang ZF (2004) A distributed non-point source pollution model: calibration and validation in the Yellow River Basin. J Environ Sci China 16(4):646–650

    CAS  Google Scholar 

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1:96–99

    Google Scholar 

  • He HM, Zhang QF, Zhou J, Fei J, Xie XP (2009) Coupling climate change with hydrological dynamic in Qinling Mountains, China. Clim Change 94(3–4):409–427. doi:10.1007/s10584-008-9527-5

    Article  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2006) Hole-filled seamless SRTM data v3. International Centre for Tropical Agriculture (CIAT). http://srtm.csi.cgiar.org. Accessed 23 Feb 2013

  • Jayakrishnan R, Srinivasan R, Santhi C, Arnold JG (2005) Advances in the application of the SWAT model for water resources management. In: 1st International SWAT conference, Rauischholzhausen, Germany, Aug 2005, pp 749–762. doi:10.1002/hyp.5624

  • Jha M, Arnold JG, Gassman PW, Giorgi F, Gu RR (2006) Climate change sensitivity assessment on Upper Mississippi River Basin streamflows using SWAT. J Am Water Resour Assoc 42(4):997–1015

    Article  Google Scholar 

  • Jiang T, Chen YQD, Xu CYY, Chen XH, Chen X, Singh VP (2007) Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin, South China. J Hydrol 336(3–4):316–333. doi:10.1016/j.jhydrol.2007.01.010

    Article  Google Scholar 

  • Lee JHW, Wang ZY, Thoe W, Cheng DS (2007) Integrated physical and ecological management of the East River. Water Sci Technol Water Supply 7(2):81–91. doi:10.2166/ws.2007.043

    Article  Google Scholar 

  • Liang G, Chen Q, Deng H (1993) Resources, environment and economic development of Dongjiang Basin in Guangdong (in Chinese). China Ocean Press, Beijing

    Google Scholar 

  • Monteith JL (1965) Evaporation and the environment. Paper presented at the The state and movement of water in living organisms, XIXth Symposium, Swansea

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900

    Google Scholar 

  • Muleta MK, Nicklow JW (2005) Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model. J Hydrol 306(1–4):127–145. doi:10.1016/j.jhydrol.2004.09.005

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models. Part I. A discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR, King KW (2005) Soil and water assessment tool theoretical documentation. Version 2005 edn. Grassland, Soil and Research Service, Temple

  • Niu J, Chen J (2010) Terrestrial hydrological features of the Pearl River Basin in south China. J Hydro Environ Res 4(4):279–288. doi:10.1016/j.jher.2010.04.016

    Article  Google Scholar 

  • Oudin L, Andreassian V, Lerat J, Michel C (2008) Has land cover a significant impact on mean annual streamflow? An international assessment using 1508 catchments. J Hydrol 357(3–4):303–316. doi:10.1016/j.jhydrol.2008.05.021

    Article  Google Scholar 

  • Ouyang W, Skidmore AK, Hao FH, Wang TJ (2010) Soil erosion dynamics response to landscape pattern. Sci Total Environ 408(6):1358–1366. doi:10.1016/j.scitotenv.2009.10.062

    Article  CAS  Google Scholar 

  • Panagopoulos Y, Makropoulos C, Mimikou M (2012) Decision support for diffuse pollution management. Environ Model Softw 30:57–70. doi:10.1016/j.envsoft.2011.11.006

    Article  Google Scholar 

  • Priestly CHB, Taylor RJ (1972) Assessment of surface heat-flux and evaporation using large-scale parameters. Mon Weather Rev 100(2):81–92

    Article  Google Scholar 

  • Ramanarayanan TS, Williams JR, Dugas WA, Hauck LM, McFarland AMS (1997) Using apex to identify alternative practices for animal waste management. Part II. Model application. Paper presented at the ASAE Paper 97-2209, St. Joseph, MI

  • Ritchie JT (1972) Model for predicting evaporation from a row crop with incomplete cover. Water Resour Res 8(5):1204–1213

    Article  Google Scholar 

  • Santhi C, Arnold JG, Williams JR, Dugas WA, Srinivasan R, Hauck LM (2001) Validation of the SWAT model on a large river basin with point and nonpoint sources. J Am Water Resour Assoc 37(5):1169–1188

    Article  CAS  Google Scholar 

  • Singh J, Knapp HV, Arnold JG, Demissie M (2003) Hydrological modeling of the Iroquois River watershed using HSPF and SWAT. In: AWRA spring specialty conference on agricultural hydrology and water quality, Kansas City, MO, May 2003, pp 343–360

  • Srinivasan R, Arnold JG (1994) Integration of a basin-scale water-quality model with GIS. Water Resour Bull 30(3):453–462

    Article  Google Scholar 

  • Srinivasan R, Zhang X, Arnold J (2010) SWAT ungauged: hydrological budget and crop yield predictions in the Upper Mississippi River Basin. Trans ASABE 53(5):1533–1546

    CAS  Google Scholar 

  • Tolson BA, Shoemaker CA (2007) Cannonsville reservoir watershed SWAT2000 model development, calibration and validation. J Hydrol 337(1–2):68–86. doi:10.1016/j.jhydrol.2007.01.017

    Article  Google Scholar 

  • van Dijk AIJM, Keenan RJ (2007) Planted forests and water in perspective. For Ecol Manag 251(1–2):1–9. doi:10.1016/j.foreco.2007.06.010

    Article  Google Scholar 

  • van Griensven A, Meixner T, Grunwald S, Bishop T, Diluzio A, Srinivasan R (2006) A global sensitivity analysis tool for the parameters of multi-variable catchment models. J Hydrol 324(1–4):10–23. doi:10.1016/j.jhydrol.2005.09.008

    Article  Google Scholar 

  • Wang S, Kang S, Zhang L, Li F (2008) Modelling hydrological response to different land-use and climate change scenarios in the Zamu River Basin of Northwest China. Hydrol Process 22(14):2502–2510. doi:10.1002/hyp.6846

    Article  Google Scholar 

  • Weber A, Fohrer N, Moller D (2001) Long-term land use changes in a mesoscale watershed due to socio-economic factors—effects on landscape structures and functions. Ecol Model 140(1–2):125–140

    Article  Google Scholar 

  • Wu Y (2009) Investigation of integrated terrestrial processes over the East River Basin in south China. The University of Hong Kong, Hong Kong

    Google Scholar 

  • Wu Y, Chen J (2009) Simulation of nitrogen and phosphorus loads in the Dongjiang River Basin in south China using SWAT. Front Earth Sci China 3(3):273–278. doi:10.1007/s11707-009-0032-6

    Article  CAS  Google Scholar 

  • Wu Y, Chen J (2012a) Modeling of soil erosion and sediment transport in the East River Basin in southern China. Sci Total Environ 441:159–168. doi:10.1016/j.scitotenv.2012.09.057

    Article  CAS  Google Scholar 

  • Wu Y, Chen J (2012b) An operation-based scheme for a multiyear and multipurpose reservoir to enhance macro-scale hydrologic models. J Hydrometeorol 12(4):1–14. doi:10.1175/JHM-D-10-05028.1

    Google Scholar 

  • Wu Y, Chen J (2013) Estimating irrigation water demand using an improved method and optimizing reservoir operation for water supply and hydropower generation: a case study of the Xinfengjiang reservoir in southern China. Agric Water Manag 116:110–121. doi:10.1016/j.agwat.2012.10.016

    Article  Google Scholar 

  • Wu Y, Liu S (2012) Impacts of biofuels production alternatives on water quantity and quality in the Iowa River Basin. Biomass Bioenergy 36:182–191. doi:10.1016/j.biombioe.2011.10.030

    Article  CAS  Google Scholar 

  • Wu K, Xu YJ (2006) Evaluation of the applicability of the SWAT model for coastal watersheds in southeastern Louisiana. J Am Water Resour Assoc 42(5):1247–1260

    Article  Google Scholar 

  • Wu Y, Liu S, Abdul-Aziz OI (2012a) Hydrological effects of the increased CO2 and climate change in the upper Mississippi River Basin using a modified SWAT. Clim Change 110(3–4):977–1003. doi:10.1007/s10584-011-0087-8

    Article  Google Scholar 

  • Wu Y, Liu S, Chen J (2012b) Urbanization eases water crisis in China. Environ Dev 2:141–144. doi:10.1016/j.envdev.2012.02.003

    Google Scholar 

  • Wu Y, Liu S, Li Z (2012c) Identifying potential areas for biofuel production and evaluating the environmental effects: a case study of the James River Basin in the Midwestern United States. Glob Change Biol Bioenergy 4(6):875–888. doi:10.1111/j.1757-1707.2012.01164.x

    Article  Google Scholar 

  • Zhang XS, Srinivasan R, Debele B, Hao FH (2008) Runoff simulation of the headwaters of the yellow river using the SWAT model with three snowmelt algorithms. J Am Water Resour Assoc 44(1):48–61. doi:10.1111/j.1752-1688.2007.00137.x

    Article  Google Scholar 

  • Zhang XS, Srinivasan R, Bosch D (2009) Calibration and uncertainty analysis of the SWAT model using genetic algorithms and bayesian model averaging. J Hydrol 374(3–4):307–317. doi:10.1016/j.jhydrol.2009.06.023

    Article  Google Scholar 

  • Zhang XS, Srinivasan R, Arnold J, Izaurralde RC, Bosch D (2011) Simultaneous calibration of surface flow and baseflow simulations: a revisit of the SWAT model calibration framework. Hydrol Process 25(14):2313–2320. doi:10.1002/hyp.8058

    Article  Google Scholar 

  • Zhang A, Zhang C, Fu G, Wang B, Bao Z, Zheng H (2012) Assessments of impacts of climate change and human activities on runoff with SWAT for the Huifa River Basin, northeast China. Water Resour Manag 26(8):2199–2217. doi:10.1007/s11269-012-0010-8

    Article  Google Scholar 

  • Zhou GY, Wei XH, Luo Y, Zhang MF, Li YL, Qiao YN, Liu HG, Wang CL (2010) Forest recovery and river discharge at the regional scale of Guangdong province, China. Water Resour Res 46. doi:10.1029/2009wr008829

  • Zhou G, Wei X, Wu Y, Liu S, Huang Y, Yan J, Zhang D, Zhang Q, Liu J, Meng Z, Wang C, Chu G, Liu SZ, Tang X, Liu X (2011) Quantifying the hydrological responses to climate change using an intact forested small watershed in southern China. Glob Change Biol 17(12):3736–3746. doi:10.1111/j.1365-2486.2011.02499.x

    Article  Google Scholar 

Download references

Acknowledgments

The financial support for our study came from a HKSAR RGC GRF Project (HKU 710910E). Part of this work was performed under the USGS contract G08PC91508. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. We thank Devendra Dahal (Stinger Ghaffarian Technologies, a contractor to USGS EROS) for his comments on the early draft and thank Elisabeth Brouwers and Sandra Cooper (USGS) for further reviews to improve the paper quality. We also thank the Editor and two anonymous reviewers for their invaluable and constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiping Wu or Ji Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Chen, J. Analyzing the Water Budget and Hydrological Characteristics and Responses to Land Use in a Monsoonal Climate River Basin in South China. Environmental Management 51, 1174–1186 (2013). https://doi.org/10.1007/s00267-013-0045-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-013-0045-5

Keywords

Navigation