Skip to main content

Advertisement

Log in

Adenovirus-Mediated Expression of Keratinocyte Growth Factor Promotes Secondary Flap Necrotic Wound Healing in an Extended Animal Model

  • Original Article
  • Experimental/Special Topics
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Background

No effective treatments have been found for flap necrosis. Animal models that focus on the initial flap viability are inappropriate for necrotic wound studies. Keratinocyte growth factor (KGF) promotes keratinocyte proliferation with stronger activity and fewer complications and thus may be useful for necrotic flap wound healing.

Methods

Rats with modified flap necrosis were randomly divided into four groups. An adenoviral vector expressing KGF was injected subdermally in the back of the animals after necrosis began. The expression and effect of KGF was assessed by real-time polymerase chain reaction, enzyme-linked immunoassay, and transwell, and wound healing was monitored.

Results

The plasmid and adenovirus were able to express KGF and stimulate epithelial cell growth (p = 0.029). Histology showed that the necrosis healed fastest in the KGF administration group than in the control groups (p < 0.01). The adenovirus-mediated KGF (Ad-KGF) group had the thickest epithelium on days 15 (p = 0.044) and 25 (p = 0.014). The KGF level in the blood serum soared 10 and 15 days postoperatively (p < 0.01) but returned to baseline by day 25 (p = 0.561). The KGF mRNA levels in vivo increased dramatically in the Ad-KGF group (p = 0.037).

Conclusions

The extended flap model is applicable in necrotic wound study. Keratinocyte growth factor can promote secondary necrotic flap wound healing, and administration of KGF can be achieved by an adenoviral vector.

Level of Evidence IV

This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lineaweaver WC, Lei MP, Mustain W, Oswald TM, Cui D, Zhang F (2004) Vascular endothelium growth factor, surgical delay, and skin flap survival. Ann Surg 239(866–873):873–875

    Google Scholar 

  2. Roman S, Poole M, Lindeman R (2004) Vascular endothelial growth factor (VEGF) expression and the effect of exogenous VEGF on survival of a random flap in the rat. Br J Plast Surg 57:174

    Article  PubMed  Google Scholar 

  3. Hallock GG (2001) Physiological studies using laser Doppler flowmetry to compare blood flow to the zones of the free TRAM flap. Ann Plast Surg 47:229–233

    Article  PubMed  CAS  Google Scholar 

  4. Akamatsu J, Ueda K, Tajima S, Nozawa M (2000) Sulfatide elongates dorsal skin flap survival in rats. J Surg Res 92:36–39

    Article  PubMed  CAS  Google Scholar 

  5. Karacal N, Ambarcioglu O, Topal U, Mamedov T, Kutlu N (2005) Enhancement of dorsal random-pattern skin flap survival in rats with topical lidocaine and prilocaine (EMLA): enhancement of flap survival by EMLA. J Surg Res 124:134–138

    Article  PubMed  CAS  Google Scholar 

  6. Handschin AE, Busch K, Vogt PM (2009) The efficacy of prophylactic low-molecular-weight heparin to prevent pulmonary thromboembolism in immediate breast reconstruction using the TRAM flap. Plast Reconstr Surg 124:322–323

    Article  PubMed  CAS  Google Scholar 

  7. Gurunluoglu R, Meirer R, Shafighi M, Huemer GM, Yilmaz B, Piza-Katzer H (2005) Gene therapy with adenovirus-mediated VEGF enhances skin flap prefabrication. Microsurgery 25:433–441

    Article  PubMed  Google Scholar 

  8. Haws MJ, Erdman D, Bayati S, Brown RE, Russell RC (2001) Basic fibroblast growth factor–induced angiogenesis and prefabricated flap survival. J Reconstr Microsurg 17(39–42):43–44

    Google Scholar 

  9. Kryger Z, Zhang F, Dogan T, Cheng C, Lineaweaver WC, Buncke HJ (2000) The effects of VEGF on survival of a random flap in the rat: Examination of various routes of administration. Br J Plast Surg 53:234–239

    Article  PubMed  CAS  Google Scholar 

  10. Rashid MA, Akita S, Razzaque MS, Yoshimoto H, Ishihara H, Fujii T, Tanaka K, Taguchi T (1999) Coadministration of basic fibroblast growth factor and sucrose octasulfate (sucralfate) facilitates the rat dorsal flap survival and viability. Plast Reconstr Surg 103:941–948

    Article  PubMed  CAS  Google Scholar 

  11. Taub PJ, Marmur JD, Zhang WX, Senderoff D, Nhat PD, Phelps R, Urken ML, Silver L, Weinberg H (1998) Locally administered vascular endothelial growth factor cDNA increases survival of ischemic experimental skin flaps. Plast Reconstr Surg 102:2033–2039

    Article  PubMed  CAS  Google Scholar 

  12. Ware LB, Matthay MA (2002) Keratinocyte and hepatocyte growth factors in the lung: roles in lung development, inflammation, and repair. Am J Physiol Lung Cell Mol Physiol 282:L924–L940

    PubMed  CAS  Google Scholar 

  13. Takeoka M, Ward WF, Pollack H, Kamp DW, Panos RJ (1997) KGF facilitates repair of radiation-induced DNA damage in alveolar epithelial cells. Am J Physiol 272:L1174–L1180

    PubMed  CAS  Google Scholar 

  14. Weigelt C, Haas R, Kobbe G (2011) Pharmacokinetic evaluation of palifermin for mucosal protection from chemotherapy and radiation. Expert Opin Drug Metab Toxicol 7:505–515

    Article  PubMed  CAS  Google Scholar 

  15. Finch PW, Rubin JS (2004) Keratinocyte growth factor/fibroblast growth factor 7, a homeostatic factor with therapeutic potential for epithelial protection and repair. Adv Cancer Res 91:69–136

    Article  PubMed  CAS  Google Scholar 

  16. Rubin JS, Osada H, Finch PW, Taylor WG, Rudikoff S, Aaronson SA (1989) Purification and characterization of a newly identified growth factor specific for epithelial cells. Proc Natl Acad Sci U S A 86:802–806

    Article  PubMed  CAS  Google Scholar 

  17. Werner S, Smola H, Liao X, Longaker MT, Krieg T, Hofschneider PH, Williams LT (1994) The function of KGF in morphogenesis of epithelium and reepithelialization of wounds. Science 266:819–822

    Article  PubMed  CAS  Google Scholar 

  18. Lawrence WT, Diegelmann RF (1994) Growth factors in wound healing. Clin Dermatol 12:157–169

    Article  PubMed  CAS  Google Scholar 

  19. Choi HI, Choi GI, Kim EK, Choi YJ, Sohn KC, Lee Y, Kim CD, Yoon TJ, Sohn HJ, Han SH et al (2011) Hair greying is associated with active hair growth. Br J Dermatol 165:1183–1189

    Article  PubMed  CAS  Google Scholar 

  20. Akilov OE, Donovan MJ, Stepinac T, Carter CR, Whitcomb JP, Hasan T, McDowell MA (2007) T helper type 1 cytokines and keratinocyte growth factor play a critical role in pseudoepitheliomatous hyperplasia initiation during cutaneous leishmaniasis. Arch Dermatol Res 299:315–325

    Article  PubMed  CAS  Google Scholar 

  21. Farrell CL, Rex KL, Chen JN, Bready JV, DiPalma CR, Kaufman SA, Rattan A, Scully S, Lacey DL (2002) The effects of keratinocyte growth factor in preclinical models of mucositis. Cell Prolif 35(Suppl 1):78–85

    Article  PubMed  CAS  Google Scholar 

  22. Hille A, Gruger S, Christiansen H, Wolff HA, Volkmer B, Lehmann J, Dorr W, Rave-Frank M (2010) Effect of tumour-cell-derived or recombinant keratinocyte growth factor (KGF) on proliferation and radioresponse of human epithelial tumour cells (HNSCC) and normal keratinocytes in vitro. Radiat Environ Biophys 49:261–270

    Article  PubMed  CAS  Google Scholar 

  23. Peng C, He Q, Luo C (2011) Lack of keratinocyte growth factor retards angiogenesis in cutaneous wounds. J Int Med Res 39:416–423

    Article  PubMed  CAS  Google Scholar 

  24. Takeshita S, Zheng LP, Brogi E, Kearney M, Pu LQ, Bunting S, Ferrara N, Symes JF, Isner JM (1994) Therapeutic angiogenesis: a single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest 93:662–670

    Article  PubMed  CAS  Google Scholar 

  25. Unger EF, Banai S, Shou M, Lazarous DF, Jaklitsch MT, Scheinowitz M, Correa R, Klingbeil C, Epstein SE (1994) Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am J Physiol 266:H1588–H1595

    PubMed  CAS  Google Scholar 

  26. Taniyama Y, Morishita R, Aoki M, Nakagami H, Yamamoto K, Yamazaki K, Matsumoto K, Nakamura T, Kaneda Y, Ogihara T (2001) Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat and rabbit hind limb ischemia models: preclinical study for treatment of peripheral arterial disease. Gene Ther 8:181–189

    Article  PubMed  CAS  Google Scholar 

  27. Tsurumi Y, Takeshita S, Chen D, Kearney M, Rossow ST, Passeri J, Horowitz JR, Symes JF, Isner JM (1996) Direct intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion. Circulation 94:3281–3290

    Article  PubMed  CAS  Google Scholar 

  28. Feldman LJ, Steg PG, Zheng LP, Chen D, Kearney M, McGarr SE, Barry JJ, Dedieu JF, Perricaudet M, Isner JM (1995) Low-efficiency of percutaneous adenovirus-mediated arterial gene transfer in the atherosclerotic rabbit. J Clin Invest 95:2662–2671

    Article  PubMed  CAS  Google Scholar 

  29. Wilson JM (1995) Gene therapy for cystic fibrosis: challenges and future directions. J Clin Invest 96:2547–2554

    Article  PubMed  CAS  Google Scholar 

  30. Lynch JR, Fishbein M, Echavarria M (2011) Adenovirus. Semin Respir Crit Care Med 32:494–511

    Article  PubMed  Google Scholar 

  31. Morikawa O, Walker TA, Nielsen LD, Pan T, Cook JL, Mason RJ (2000) Effect of adenovector-mediated gene transfer of keratinocyte growth factor on the proliferation of alveolar type II cells in vitro and in vivo. Am J Respir Cell Mol Biol 23:626–635

    Article  PubMed  CAS  Google Scholar 

  32. Hall K, Blair ZM, Blair GE (2010) Unity and diversity in the human adenoviruses: exploiting alternative entry pathways for gene therapy. Biochem J 431:321–336

    PubMed  CAS  Google Scholar 

  33. Amalfitano A, Chamberlain JS (1997) Isolation and characterization of packaging cell lines that coexpress the adenovirus E1, DNA polymerase, and preterminal proteins: Implications for gene therapy. Gene Ther 4:258–263

    Article  PubMed  CAS  Google Scholar 

  34. Koohsari H, Tamaoka M, Campbell HR, Martin JG (2007) The role of gamma delta T cells in airway epithelial injury and bronchial responsiveness after chlorine gas exposure in mice. Respir Res 8:21

    Article  PubMed  Google Scholar 

  35. Dun ZN, Zhang XL, An JY, Zheng LB, Barrett R, Xie SR (2010) Specific shRNA targeting of FAK influenced collagen metabolism in rat hepatic stellate cells. World J Gastroenterol 16:4100–4106

    Article  PubMed  CAS  Google Scholar 

  36. Khan A, Ashrafpour H, Huang N, Neligan PC, Kontos C, Zhong A, Forrest CR, Pang CY (2004) Acute local subcutaneous VEGF165 injection for augmentation of skin flap viability: efficacy and mechanism. Am J Physiol Regul Integr Comp Physiol 287:R1219–R1229

    Article  PubMed  CAS  Google Scholar 

  37. McFarlane RM, Heagy FC, Radin S, Aust JC, Wermuth RE (1965) A study of the delay phenomenon in experimental pedicle flaps. Plast Reconstr Surg 35:245–262

    Article  PubMed  CAS  Google Scholar 

  38. Rinker B, Fink BF, Barry NG, Fife JA, Milan ME (2010) The effect of calcium-channel blockers on smoking-induced skin flap necrosis. Plast Reconstr Surg 125:866–871

    Article  PubMed  CAS  Google Scholar 

  39. Huang N, Khan A, Ashrafpour H, Neligan PC, Forrest CR, Kontos CD, Pang CY (2006) Efficacy and mechanism of adenovirus-mediated VEGF-165 gene therapy for augmentation of skin flap viability. Am J Physiol Heart Circ Physiol 291:H127–H137

    Article  PubMed  CAS  Google Scholar 

  40. Fujihara Y, Koyama H, Nishiyama N, Eguchi T, Takato T (2005) Gene transfer of bFGF to recipient bed improves survival of ischemic skin flap. Br J Plast Surg 58:511–517

    Article  PubMed  CAS  Google Scholar 

  41. Honda T, Ishida K, Hayama M, Kubo K, Katsuyama T (2000) Type II pneumocytes are preferentially located along thick elastic fibers forming the framework of human alveoli. Anat Rec 258:34–38

    Article  PubMed  CAS  Google Scholar 

  42. Carvalho VL, Nunes MR, Da SE, Vieira CM, Gomes M, Casseb SM, Rodrigues SG, Nunes-Neto JP, Quaresma JA, Vasconcelos PF (2009) Genetic characterization of orthobunyavirus Melao, strains BE AR633512 and BE AR8033, and experimental infection in golden hamsters (Mesocricetus auratus). J Gen Virol 90:223–233

    Article  PubMed  CAS  Google Scholar 

  43. Kaczmarek A, Vandenabeele P, Krysko DV (2013) Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38:209–223

    Article  PubMed  CAS  Google Scholar 

  44. Auf DU, Krampert M, Kumin A, Braun S, Werner S (2004) Keratinocyte growth factor: effects on keratinocytes and mechanisms of action. Eur J Cell Biol 83:607–612

    Article  Google Scholar 

  45. Xia YP, Zhao Y, Marcus J, Jimenez PA, Ruben SM, Moore PA, Khan F, Mustoe TA (1999) Effects of keratinocyte growth factor-2 (KGF-2) on wound healing in an ischaemia-impaired rabbit ear model and on scar formation. J Pathol 188:431–438

    Article  PubMed  CAS  Google Scholar 

  46. Richardson GD, Bazzi H, Fantauzzo KA, Waters JM, Crawford H, Hynd P, Christiano AM, Jahoda CA (2009) KGF and EGF signalling block hair follicle induction and promote interfollicular epidermal fate in developing mouse skin. Development 136:2153–2164

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Chen Li, Gong Li, and Fang Wen, who kindly provided pAd-KGF, Pa317, and HUVEC for this study.

Conflict of interest

The authors had no conflicts of interest to declare in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiming Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Yu, M., Zhu, W. et al. Adenovirus-Mediated Expression of Keratinocyte Growth Factor Promotes Secondary Flap Necrotic Wound Healing in an Extended Animal Model. Aesth Plast Surg 37, 1023–1033 (2013). https://doi.org/10.1007/s00266-013-0200-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-013-0200-7

Keywords

Navigation