Skip to main content
Log in

Effects of heterozygosity and MHC diversity on patterns of extra-pair paternity in the socially monogamous scarlet rosefinch

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Extra-pair copulation without apparent direct benefits is an evolutionary puzzle that requires indirect fitness benefits to females to explain its ubiquity in socially monogamous mating systems. Using wild scarlet rosefinches (Carpodacus erythrinus), we tested if genetic benefits in the form of global (microsatellite) heterozygote advantage, adaptive genes (major histocompatibility complex), or complementary genes (using both markers) were responsible for female extra-pair mate choice, while considering that the benefits of mate choice may be conditional on female genotype. We found no evidence for assortative or relatedness-based mating (complementary genes), but higher MHC diversity, microsatellite heterozygosity, and condition were significantly related to male extra-pair paternity (EPP) success. In contrast, female probability of having extra-pair offspring decreased with increasing heterozygosity. Interestingly, extra-pair and within-pair males had higher heterozygosity than their female mates and extra-pair males had higher MHC supertype diversity. The only genetic difference between extra-pair and within-pair offspring was lower variance in MHC allelic diversity within extra-pair offspring, providing limited support for indirect genetic fitness benefits for the markers tested. Offspring had both higher neutral heterozygosity and number of MHC supertypes than adults, as well as significant identity disequilibrium, potentially suggesting that mates are chosen to increase offspring diversity in the period of the present study. Overall, our results point to an EPP heterozygote advantage for males, especially when involving less heterozygous females, and suggest that heterozygosity effects on reproduction may differ between the sexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aeschlimann P, Häberli M, Reusch T, Boehm T, Milinski M (2003) Female sticklebacks Gasterosteus aculeatus use self-reference to optimize MHC allele number during mate selection. Behav Ecol Sociobiol 54:119–126

    Google Scholar 

  • Agudo R, Carrete M, Alcaide M, Rico C, Hiraldo F, Donázar JA (2012) Genetic diversity at neutral and adaptive loci determines individual fitness in a long-lived territorial bird. Proc R Soc Lond B 279:3241–3249

    Article  Google Scholar 

  • Akçay E, Roughgarden J (2007) Extra-pair paternity in birds: review of the genetic benefits. Evol Ecol Res 9:855

    Google Scholar 

  • Albrecht T (2004) Edge effect in wetland-arable land boundary determines nesting success of scarlet rosefinches (Carpodacus erythrinus) in the Czech Republic. Auk 121:361–371

    Article  Google Scholar 

  • Albrecht T, Schnitzer J, Kreisinger J, Exnerová A, Bryja J, Munclinger P (2007) Extrapair paternity and the opportunity for sexual selection in long-distant migratory passerines. Behav Ecol 18:477–486

    Article  Google Scholar 

  • Albrecht T, Vinkler M, Schnitzer J, PolÁKovÁ R, Munclinger P, Bryja J (2009) Extra-pair fertilizations contribute to selection on secondary male ornamentation in a socially monogamous passerine. J Evol Biol 22:2020–2030

    Article  CAS  PubMed  Google Scholar 

  • Amos W, Wilmer JW, Fullard K, Burg T, Croxall J, Bloch D, Coulson T (2001) The influence of parental relatedness on reproductive success. Proc R Soc Lond B 268:2021–2027

    Article  CAS  Google Scholar 

  • Arnqvist G, Kirkpatrick M (2005) The evolution of infidelity in socially monogamous passerines: the strength of direct and indirect selection on extrapair copulation behavior in females. Am Nat 165:S26–S37

    Article  PubMed  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2014) lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1–7, http://CRAN.R-project.org/package=lme4

  • Bollmer JL, Dunn PO, Freeman-Gallant CR, Whittingham LA (2012) Social and extra-pair mating in relation to major histocompatibility complex variation in common yellowthroats. Proc R Soc Lond B 279:4778–4785

    Article  Google Scholar 

  • Brown JL (1997) A theory of mate choice based on heterozygosity. Behav Ecol 8:60–65

    Article  Google Scholar 

  • Brown JL, Eklund A (1994) Kin recognition and the major histocompatibility complex: an integrative review. Am Nat 143:435–461

    Article  Google Scholar 

  • Calcagno V, de Mazancourt C (2010) glmulti: an R package for easy automated model selection with (generalized) linear models. J Stat Softw 34:1–29

    Google Scholar 

  • Coltman D, Slate J (2003) Microsatellite measures of inbreeding: a meta‐analysis. Evolution 57:971–983

    Article  CAS  PubMed  Google Scholar 

  • Coltman DW, Pilkington JG, Smith JA, Pemberton JM (1999) Parasite-mediated selection against inbred Soay sheep in a free-living, island population. Evolution 53:1259–1267

    Article  Google Scholar 

  • Consuegra S, Garcia de Leaniz C (2008) MHC-mediated mate choice increases parasite resistance in salmon. Proc R Soc Lond B 275:1397–1403

    Article  Google Scholar 

  • Croft DP, Madden JR, Franks DW, James R (2011) Hypothesis testing in animal social networks. Trends Ecol Evol 26:502–507

    Article  PubMed  Google Scholar 

  • David P, Pujol B, Viard F, Castella V, Goudet J (2007) Reliable selfing rate estimates from imperfect population genetic data. Mol Ecol 16:2474–2487

    Article  CAS  PubMed  Google Scholar 

  • Davis AK, Maney DL, Maerz JC (2008) The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct Ecol 22:760–772

    Article  Google Scholar 

  • Dunn PO, Bollmer JL, Freeeman‐Gallant CR, Whittingham LA (2012) MHC variation is related to a sexually selected ornament, survival, and parasite resistance in common yellowthroats. Evolution 67:679–687

    Article  PubMed  Google Scholar 

  • Eliassen S, Kokko H (2008) Current analyses do not resolve whether extra-pair paternity is male or female driven. Behav Ecol Sociobiol 62:1795–1804

    Article  Google Scholar 

  • Fitzpatrick JL, Evans JP (2009) Reduced heterozygosity impairs sperm quality in endangered mammals. Biol Lett 5:320–323

    Article  PubMed Central  PubMed  Google Scholar 

  • Forstmeier W (2007) Do individual females differ intrinsically in their propensity to engage in extra-pair copulations? PLoS ONE 2:e952

    Article  PubMed Central  PubMed  Google Scholar 

  • Fromhage L, Kokko H, Reid JM (2009) Evolution of mate choice for genome-wide heterozygosity. Evolution 63:684–694

    Article  CAS  PubMed  Google Scholar 

  • Gage M, Surridge A, Tomkins J, Green E, Wiskin L, Bell D, Hewitt G (2006) Reduced heterozygosity depresses sperm quality in wild rabbits, Oryctolagus cuniculus. Curr Biol 16:612–617

    Article  CAS  PubMed  Google Scholar 

  • García-Navas V, Ortego J, Sanz JJ (2009) Heterozygosity-based assortative mating in blue tits (Cyanistes caeruleus): implications for the evolution of mate choice. Proc R Soc Lond B 276:2931–2940

    Article  Google Scholar 

  • Goudet J (2001) FSTAT, version 2.9.3, a program to estimate and test gene diversities and fixation indices. Lausanne University, Lausanne

    Google Scholar 

  • Griffith SC (2007) The evolution of infidelity in socially monogamous passerines: neglected components of direct and indirect selection. Am Nat 169:274–281

    Article  PubMed  Google Scholar 

  • Griffith SC, Owens IPF, Thuman KA (2002) Extra pair paternity in birds: a review of interspecific variation and adaptive function. Mol Ecol 11:2195–2212

    Article  CAS  PubMed  Google Scholar 

  • Griggio M, Biard C, Penn D, Hoi H (2011) Female house sparrows “count on” male genes: experimental evidence for MHC-dependent mate preference in birds. BMC Evol Biol 11:44

    Article  PubMed Central  PubMed  Google Scholar 

  • Hamilton WD, Zuk M (1982) Heritable true fitness and bright birds: a role for parasites? Science 218:384–387

    Article  CAS  PubMed  Google Scholar 

  • Herdegen M, Dudka K, Radwan J (2014) Heterozygosity and orange coloration are associated in the guppy (Poecilia reticulata). J Evol Biol 27:220–225

    Article  Google Scholar 

  • Hothorn T, Hornik K, van de Wiel MAV, Zeileis A (2008) Implementing a class of permutation tests: the Coin package. J Stat Softw 28:1–23

    Google Scholar 

  • Hui W, Gel YR, Gastwirth JL (2008) lawstat: an R package for law, public policy and biostatistics. J Stat Softw 28:1–26

    Google Scholar 

  • Ilmonen P, Stundner G, Thoss M, Penn DJ (2009) Females prefer the scent of outbred males: good-genes-as-heterozygosity? BMC Evol Biol 9:104

    Article  PubMed Central  PubMed  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Kempenaers B (2007) Mate choice and genetic quality: a review of the heterozygosity theory. Adv Study Behav 37:189–278

    Article  Google Scholar 

  • Klein J (1986) Natural history of the major histocompatibility complex. Wiley, New York

    Google Scholar 

  • Konovalov DA, Manning C, Henshaw MT (2004) KINGROUP: a program for pedigree relationship reconstruction and kin group assignments using genetic markers. Mol Ecol Notes 4:779–782

    Article  Google Scholar 

  • Milinski M (2006) The major histocompatibility complex, sexual selection, and mate choice. Ann Rev Ecol Evol Syst 37:159–186

    Article  Google Scholar 

  • Nowak MA, Tarczy-Hornoch K, Austyn JM (1992) The optimal number of major histocompatibility complex molecules in an individual. Proc Natl Acad Sci U S A 89:10896–10899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pavlova A, Zink RM, Rohwer S (2005) Evolutionary history, population genetics, and gene flow in the common rosefinch (Carpodacus erythrinus). Mol Phylogenet Evol 36:669–681

    Article  CAS  PubMed  Google Scholar 

  • Poláková R, Vyskočilová M, Marton J-F, Mays HL, Hill GE, Bryja J, Albrecht T (2007) A multiplex set of microsatellite markers for the scarlet rosefinch (Carpodacus erythrinus). Mol Ecol Notes 7:1375–1378

    Article  Google Scholar 

  • Promerová M, Vinkler M, Bryja J, Poláková R, Schnitzer J, Munclinger P, Albrecht T (2011) Occurrence of extra‐pair paternity is connected to social male’s MHC‐variability in the scarlet rosefinch Carpodacus erythrinus. J Avian Biol 42:5–10

    Article  Google Scholar 

  • Promerova M, Babik W, Bryja J, Albrecht T, Stuglik M, Radwan J (2012) Evaluation of two approaches to genotyping major histocompatibility complex class I in a passerine—CE‐SSCP and 454 pyrosequencing. Mol Ecol Resour 12:285–292

    Article  CAS  PubMed  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution:258–275

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/

  • Reid JM, Arcese P, Cassidy ALE, Marr AB, Smith JNM, Keller LF (2005) Hamilton and Zuk meet heterozygosity? Song repertoire size indicates inbreeding and immunity in song sparrows (Melospiza melodia). Proc R Soc Lond B 272:481–487

    Article  Google Scholar 

  • Reid JM, Arcese P, Keller LF (2006) Intrinsic parent‐offspring correlation in inbreeding level in a song sparrow (Melospiza melodia) population open to immigration. Am Nat 168:1–13

    Article  PubMed  Google Scholar 

  • Reusch TBH, Häberli MA, Aeschlimann PB, Milinski M (2001) Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism. Nature 414:300–302

    Article  CAS  PubMed  Google Scholar 

  • Richardson DS, Komdeur J, Burke T, von Schantz T (2005) MHC-based patterns of social and extra-pair mate choice in the Seychelles warbler. Proc R Soc Lond B 272:759–767

    Article  Google Scholar 

  • Rubenstein DR (2007) Female extrapair mate choice in a cooperative breeder: trading sex for help and increasing offspring heterozygosity. Proc R Soc Lond B 274:1895–1903

    Article  Google Scholar 

  • Sandberg M, Eriksson L, Jonsson J, Sjöström M, Wold S (1998) New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J Med Chem 41:2481–2491

    Article  CAS  PubMed  Google Scholar 

  • Sepil I, Lachish S, Hinks AE, Sheldon BC (2013) Mhc supertypes confer both qualitative and quantitative resistance to avian malaria infections in a wild bird population. Proc R Soc Lond B 280:20130134

    Article  Google Scholar 

  • Stjernberg T (1979) Breeding biology and population dynamics of the Scarlet Rosefinch Carpodacus erythrinus. Acta Zool Fenn 157:1–88

    Google Scholar 

  • Strandh M, Westerdahl H, Pontarp M, Canbäck B, Dubois M-P, Miquel C, Taberlet P, Bonadonna F (2012) Major histocompatibility complex class II compatibility, but not class I, predicts mate choice in a bird with highly developed olfaction. Proc R Soc Lond B 279:4457–4463

    Article  CAS  Google Scholar 

  • Stuglik MT, Radwan J, Babik W (2011) jMHC: software assistant for multilocus genotyping of gene families using next-generation amplicon sequencing. Mol Ecol Resour 11:739–742

    Article  CAS  PubMed  Google Scholar 

  • Szulkin M, Bierne N, David P (2010) Heterozygosity-fitness correlations: a time for reappraisal. Evolution 64:1202–1217

    PubMed  Google Scholar 

  • Tomkins JL, Radwan J, Kotiaho JS, Tregenza T (2004) Genic capture and resolving the lek paradox. Trends Ecol Evol 19:323–328

    Article  PubMed  Google Scholar 

  • Tregenza T, Wedell N (2000) Genetic compatibility, mate choice and patterns of parentage: invited review. Mol Ecol 9:1013–1027

    Article  CAS  PubMed  Google Scholar 

  • Van Oosterhout C, Trigg R, Carvalho G, Magurran A, Hauser L, Shaw P (2003) Inbreeding depression and genetic load of sexually selected traits: how the guppy lost its spots. J Evol Biol 16:273–281

    Article  PubMed  Google Scholar 

  • Vinkler M, Schnitzer J, Munclinger P, Votýpka J, Albrecht T (2010) Haematological health assessment in a passerine with extremely high proportion of basophils in peripheral blood. J Ornithol 151:841–849

    Article  Google Scholar 

  • Westerdahl H, Asghar M, Hasselquist D, Bensch S (2012) Quantitative disease resistance: to better understand parasite-mediated selection on major histocompatibility complex. Proc R Soc Lond B 279:577–584

    Article  Google Scholar 

  • Westneat DF, Stewart IRK (2003) Extra-pair paternity in birds: causes, correlates, and conflict. Ann Rev Ecol Evol Syst 34:365–396

    Article  Google Scholar 

  • Wetton JH, Carter RE, Parkin DT, Walters D (1987) Demographic study of a wild house sparrow population by DNA fingerprinting. Nature 327:147–149

    Article  CAS  PubMed  Google Scholar 

  • Whitlock MC (2005) Combining probability from independent tests: the weighted Z-method is superior to Fisher’s approach. J Evol Biol 18:1368–1373

    Article  CAS  PubMed  Google Scholar 

  • Zajitschek SRK, Lindholm AK, Evans JP, Brooks RC (2009) Experimental evidence that high levels of inbreeding depress sperm competitiveness. J Evol Biol 22:1338–1345

    Article  CAS  PubMed  Google Scholar 

  • Zelano B, Edwards SV (2002) An MHC component to kin recognition and mate choice in birds: predictions, progress, and prospects. Am Nat 160:S225–S237

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank J. Abbate, A. Courtiol, J. Rushmore, S. Baird, the Bryja and Albrecht lab groups, and two anonymous reviewers for helpful discussion and comments on previous manuscript versions. We thank the Institute of Vertebrate Biology and the “bird genetics” project funded by the Czech Science Foundation, Reg. No. P505/10/1871 for field and lab support. JCW was supported by the European Social Fund (ESF) and the state budget of Czech Republic through the Operational Program Education for Competitiveness (OPEC), Reg. No. CZ.1.07/2.3.00/30.0048.

Conflict of interest

All authors declare no conflict of interest.

Authorship

The project was designed by TA, JB, and PM; data was collected by TA, PM, MV, JS, and RP; pyrosequencing was designed by WB and JR, and genetic analyses were performed by MP and RP; JW, MP, and TA analyzed data for this paper, and JW, MP, JR, MV, JB, and TA wrote the manuscript.

Ethical standards

All protocols were noninvasive and adhered to the laws and guidelines of the Czech Republic (Czech Research Permit numbers 6628/2008-10001). All protocols were approved by the Animal Care and Use Committees at the Czech Academy of Sciences (041/2011) and Charles University (4789/2008-30).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Winternitz.

Additional information

Communicated by D. Rubenstein

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 235 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winternitz, J.C., Promerova, M., Polakova, R. et al. Effects of heterozygosity and MHC diversity on patterns of extra-pair paternity in the socially monogamous scarlet rosefinch. Behav Ecol Sociobiol 69, 459–469 (2015). https://doi.org/10.1007/s00265-014-1858-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-014-1858-9

Keywords

Navigation