Skip to main content

Advertisement

Log in

Optimal within-patch movement strategies for optimising patch residence time: an agent-based modelling approach

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Several optimisation models, like the marginal value theorem (MVT), have been proposed to predict the optimal time foraging animals should remain on patches of resources. These models do not clearly indicate, however, how animals can follow the corresponding predictions. Hence, several proximate patch-leaving decision rules have been proposed. Most if not all of these are based on the animals’ motivation to remain on the patches, but the real behaviours involved in such motivation actually still remain to be identified. Since animals are usually exploiting patches of resources by walking, we developed a model simulating the intra-patch movement decisions of time-limited animals exploiting resources distributed in delimited patches in environments with different resource abundances and distributions. The values of the model parameters were optimised in the different environments by means of a genetic algorithm. Results indicate that simple modifications of the walking pattern of the foraging animals when resources are discovered can lead to patch residence times that appear consistent with the predictions of the MVT. These results provide a more concrete understanding of the optimal patch-leaving decision rules animals should adopt in different environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bartoń KA, Hovestadt T (2013) Prey density, value, and spatial distribution affect the efficiency of area-restricted search. J Theor Biol 316:61–69

    Article  PubMed  Google Scholar 

  • Bartoń KA, Phillips BL, Morales JM, Travis JMJ (2009) The evolution of an ‘intelligent’ dispersal strategy: biased, correlated random walks in patchy landscapes. Oikos 118:309–319

    Article  Google Scholar 

  • Bartumeus F, da Luz MGE, Viswanathan GM, Catalan J (2005) Animal search strategies: a quantitative random-walk analysis. Ecology 86:3078–3087

    Article  Google Scholar 

  • Bell WJ (1990) Searching behavior patterns in insects. Ann Rev Entomol 35:447–467

    Article  Google Scholar 

  • Bell WJ (1991) Searching behaviour. The behavioural ecology of finding resources. Chapman and Hall, London

    Google Scholar 

  • Benhamou S (1992) Efficiency of area-concentrated searching behaviour in a continuous patchy environment. J Theor Biol 159:67–81

    Article  Google Scholar 

  • Benhamou S (2007) How many animals really do the lévy walk? Ecology 88:1962–1969

    Article  PubMed  Google Scholar 

  • Bovet P, Benhamou S (1988) Spatial analysis of animal’s movement using a correlated random walk model. J Theor Biol 131:419–433

    Article  Google Scholar 

  • Bruins EBAW, Wajnberg E, Pak GA (1994) Genetic variability in the reactive distance in Trichogramma brassicae after automatic tracking of the walking path. Entomol Exp Appl 72:297–303

    Article  Google Scholar 

  • Carter MC, Dixon AFG (1982) Habitat quality and the foraging behaviour of coccinelid larvae. J Anim Ecol 51:865–878

    Article  Google Scholar 

  • Chapman DS, Dytham C, Oxford GS (2007) Landscape and fine-scale movements of a leaf beetle: the importance of boundary behaviour. Oecologia 154:55–64

    Article  PubMed  Google Scholar 

  • Charnov EL (1976) Optimal foraging: the marginal value theorem. Theor Popul Biol 9:129–136

    Article  PubMed  CAS  Google Scholar 

  • Codling EA, Plank MJ, Benhamou S (2008) Random walk models in biology. J R Soc Interface 5:813–834

    Article  PubMed  Google Scholar 

  • Colgan PW (1989) Animal motivation. Chapman and Hall, New York

    Book  Google Scholar 

  • Cronin JT, Hyland K, Abrahamson WG (2001) The pattern, rate and range of within-patch movement of a stem-galling fly. Ecol Entomol 26:16–24

    Article  Google Scholar 

  • Dall SRX, Cuthill IC (1997) Searching in patches by European starlings, Sturnus vulgaris. Behav Process 39:149–159

    Article  Google Scholar 

  • de Knegt HJ, Hengeveld GM, van Langevelde F, de Boer WF, Kirkman KP (2007) Patch density determines movement patterns and foraging efficiency of large herbivores. Behav Ecol 18:1065–1072

    Article  Google Scholar 

  • Driessen G, Bernstein C, van Alphen JJM, Kacelnik A (1995) A count-down mechanism for host search in the parasitoid Venturia canescens. J Anim Ecol 64:117–125

    Article  Google Scholar 

  • Eliassen S, Jørgensen C, Mangel M, Giske J (2009) Quantifying the adaptive value of learning in foraging behavior. Am Nat 174:478–489

    Article  PubMed  Google Scholar 

  • Focardi S, Marcellini P, Montanaro P (1996) Do ungulates exhibit a food density threshold? A field study of optimal foraging and movement patterns. J Anim Ecol 65:606–620

    Article  Google Scholar 

  • Fraser CP, Ruxton GD, Broom M (2006) Public information and patch estimation for group foragers: a re-evaluation of patch-quitting strategies in a patchy environment. Oikos 112:311–321

    Article  Google Scholar 

  • Galis F, van Alphen JJM (1981) Patch time allocation and search intensity of Asobara tabida Nees (Braconidae), a larval parasitoid of Drosophila. Neth J Zool 31:596–611

    Article  Google Scholar 

  • Gardner SM, van Lenteren JC (1986) Characterisation of the arrestment responses of Trichogramma evanescens. Oecologia 68:265–270

    Article  Google Scholar 

  • Gossard TW, Jones RE (1977) The effects of age and weather on egg-laying in Pieris rapae L. J Appl Ecol 14:65–71

    Article  Google Scholar 

  • Green RF (1984) Stopping rules for optimal foragers. Am Nat 123:30–43

    Article  Google Scholar 

  • Green RF (2006) A simpler, more general method of finding the optimal foraging strategy for Bayesian bird. Oikos 112:274–284

    Article  Google Scholar 

  • Hancock PE, Milner-Gulland EJ (2006) Optimal movement strategies for social foragers in unpredictable environments. Ecology 87:2094–2102

    Article  PubMed  Google Scholar 

  • Hoffmeister TS, Wajnberg E (2008) Finding optimal behaviors with genetic algorithms. In: Wajnberg E, Bernstein C, van Alphen J (eds) Behavioural ecology of insect parasitoids—from theoretical approaches to field applications. Blackwell Publishing, Oxford, pp 384–401

    Chapter  Google Scholar 

  • Holyoak M, Casagrandi R, Nathan R, Revilla E, Spiegel O (2008) Trends and missing parts in the study of movement ecology. P Natl Acad Sci USA 105:19060–19065

    Article  CAS  Google Scholar 

  • Houston AI (1987) The control of foraging decisions. In: Commons ML, Kacelnik A, Shettleworth SJ (eds) Quantitative analyses of behavior. Foraging, vol 4. Erlbaum, Hillsdale pp 41–61

  • Iwasa Y, Higashi M, Yamamura N (1981) Prey distribution as a factor determining the choice of optimal foraging strategy. Am Nat 117:710–723

    Article  Google Scholar 

  • Lefebvre D, Pierre J, Outreman Y, Pierre J-S (2007) Patch departure rules in Bumblebees: evidence of a decremental motivational mechanism. Behav Ecol Sociobiol 61:1707–1715

    Article  Google Scholar 

  • Liu Y-Q, Bernstein C, Thiel A (2009) Travel duration, energetic expenditure, and patch exploitation in the parasitic wasp Venturia canescens. Behav Ecol Sociobiol 63:1459–1469

    Article  Google Scholar 

  • McIntyre NE, Wiens JA (1999) Interactions between landscape structure and animal behaviour: the roles of heterogeneously distributed resources and food deprivation on movement patterns. Landscape Ecol 14:437–447

    Article  Google Scholar 

  • McNamara JM, Houston AI (1985) Optimal foraging and learning. J Theor Biol 117:231–249

    Article  Google Scholar 

  • McNamara JM, Houston AI (1987) Memory and the efficient use of information. J Theor Biol 125:385–395

    Article  PubMed  CAS  Google Scholar 

  • McNamara JM, Houston AI (2009) Integrating function and mechanism. Trends Ecol Evol 24:670–675

    Article  PubMed  Google Scholar 

  • Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE (2008) A movement ecology paradigm for unifying organismal movement research. P Natl Acad Sci USA 105:19052–19059

    Article  CAS  Google Scholar 

  • Nelson JM, Roitberg BD (1995) Flexible patch time allocation by the leafminer parasitoid, Opius dimidiatus. Ecol Entomol 20:245–252

    Article  Google Scholar 

  • Nonacs P (2001) State dependent behavior and the marginal value theorem. Behav Ecol 12:71–83

    Article  Google Scholar 

  • Nonaka E, Holme P (2007) Agent-based model approach to optimal foraging in heterogeneous landscapes: effects of patch clumpiness. Ecography 30:777–788

    Article  Google Scholar 

  • Outreman Y, Le Ralec A, Wajnberg E, Pierre J-S (2005) Effects of within- and among-patch experiences on the patch-leaving decision rules in an insect parasitoid. Behav Ecol Sociobiol 58:208–217

    Article  Google Scholar 

  • Pierre J-S, Masson J-P, Wajnberg E (2012) Patch leaving rules: a stochastic version of a well-known deterministic motivational model. J Theor Biol 313:1–11

    Article  PubMed  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, http://www.R-project.org/. ISBN 3-900051-07-0

    Google Scholar 

  • Reynolds AM (2012) Fitness-maximizing foragers can use information about patch quality to decide how to search for and within patches: optimal Lévy walk searching patterns from optimal foraging theory. J Roy Soc Inter 9:1568–1575

    Article  CAS  Google Scholar 

  • Roitberg BD (1985) Search dynamics in fruit-parasitic insects. J Insect Physiol 31:865–872

    Article  Google Scholar 

  • Ruxton GD, Beauchamp G (2008) The application of genetic algorithms in behavioural ecology, illustrated with a model of anti-predator vigilance. J Theor Biol 250:435–448

    Article  PubMed  Google Scholar 

  • Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton

    Google Scholar 

  • Stillman RA, Sutherland WJ (1990) The optimal search patterns in a patchy environment. J Theor Biol 145:177–182

    Article  Google Scholar 

  • Strand MR, Vinson SB (1982) Behavioral response of the parasitoid Cardiochiles nigriceps to a kairomone. Entomol Exp Appl 31:308–315

    Article  CAS  Google Scholar 

  • Sumida BH, Houston AI, McNamara JM, Hamilton WD (1990) Genetic algorithms and evolution. J Theor Biol 147:59–84

    Article  PubMed  CAS  Google Scholar 

  • Tentelier C, Desouhant E, Fauvergue X (2006) Habitat assessment by parasitoids: mechanisms for patch use behavior. Behav Ecol 17:515–521

    Article  Google Scholar 

  • Thiel A, Hoffmeister TS (2004) Knowing your habitat: linking patch-encounter rate and patch exploitation in parasitoids. Behav Ecol 15:419–425

    Article  Google Scholar 

  • Turchin PB (1986) Modeling the effect of host patch size on Mexican bean beetle emigration. Ecology 67:124–132

    Article  Google Scholar 

  • Turchin P (1998) Quantitative analysis of movement: measuring and modeling population redistribution in plants and animals. Sinauer Associates, Sunderland

    Google Scholar 

  • van Alphen JJM, Bernstein C, Driessen G (2003) Information acquisition and time allocation in insect parasitoids. Trends Ecol Evol 18:81–87

    Article  Google Scholar 

  • Waage JK (1978) Arrestment responses of the parasitoid, Nemeritis canescens, to a contact chemical produced by its host, Plodia interpunctella. Physiol Entomol 3:135–146

    Article  Google Scholar 

  • Waage JK (1979) Foraging for patchily-distributed hosts by the parasitoid, Nemeritis canescens. J Anim Ecol 48:353–371

    Article  Google Scholar 

  • Wajnberg E (2006) Time allocation strategies in insect parasitoids: from ultimate predictions to proximate behavioural mechanisms. Behav Ecol Sociobiol 60:589–611

    Article  Google Scholar 

  • Wajnberg E (2012) Multi-objective behavioural mechanisms are adopted by foraging animals to achieve several optimality goals simultaneously. J Anim Ecol 81:503–511

    Article  PubMed  Google Scholar 

  • Wajnberg E, Colazza S (1998) Genetic variability in the area searched by a parasitic wasp. Analysis from automatic video tracking of the walking path. J Insect Physiol 44:437–444

    Article  PubMed  CAS  Google Scholar 

  • Wajnberg E, Curty C, Colazza S (2004) Genetic variation in the mechanisms of direct mutual interference in a parasitic wasp: consequences in terms of patch-time allocation. J Anim Ecol 73:1179–1189

    Article  Google Scholar 

  • Wajnberg E, Coquillard P, Vet LEM, Hoffmeister T (2012) Optimal resource allocation to survival and reproduction in parasitic wasps foraging in fragmented habitats. PLoS ONE 7:e38227

    Article  PubMed  CAS  Google Scholar 

  • Whitley D (1989) The GENITOR algorithm and selective pressure: why rank-based allocation of reproductive trials is best. In: Schaffer D (ed) Proceedings of the 3rd International Conference on Genetic Algorithms. Morgan Kaufmann, Waltham, pp 116–121

    Google Scholar 

  • Zollner PA, Lima SL (1999) Search strategies for landscape-level interpatch movements. Ecology 80:1019–1030

    Article  Google Scholar 

Download references

Acknowledgements

S. Benhamou, V. Calcagno, P. Crowley, E. Desouhant and J.S. Pierre are thanked for their comments on an early version of the manuscript. The code of the simulation model was developed thanks to the GAlib, a C++ library that provided tools for implementing genetic algorithms (http://lancet.mit.edu/ga/), and was run on the cluster of the INRA MIGALE bioinformatics platform (http://migale.jouy.inra.fr).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Wajnberg.

Additional information

Communicated by D. Naug

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wajnberg, E., Hoffmeister, T.S. & Coquillard, P. Optimal within-patch movement strategies for optimising patch residence time: an agent-based modelling approach. Behav Ecol Sociobiol 67, 2053–2063 (2013). https://doi.org/10.1007/s00265-013-1615-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-013-1615-5

Keywords

Navigation