Skip to main content
Log in

Two roads to two sexes: unifying gamete competition and gamete limitation in a single model of anisogamy evolution

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Recent studies have revealed the importance of self-consistency in evolutionary models, particularly in the context of male–female interactions. This has been largely ignored in models of the ancestral divergence of the sexes, i.e., the evolution of anisogamy. Here, we model the evolution of anisogamy in a Fisher-consistent context, explicitly taking into account the number of interacting individuals in a typical reproductive group. We reveal an interaction between the number of adult individuals in the local mating group and the selection pressures responsible for the divergence of the sexes. The same underlying model can produce anisogamy in two different ways. Gamete competition can lead to anisogamy when it is relatively easy for gametes to find each other, but when this is more difficult and gamete competition is absent, gamete limitation can provide another route for anisogamy to evolve. In line with earlier models, organismal complexity favors anisogamy. We argue that the early contributions of Kalmus and Scudo, largely dismissed as group selectionist, are valid under certain conditions. Linking their work with the contributions of Parker helps to explain why precisely males keep producing more sperm than can ever lead to offspring: sperm could evolve to provision zygotes but this brings little profit for the effort required, because sperm would have to be equipped with provisioning ability before it is known which sperm will make it to the fertilization stage. This insight creates a logical link between paternal care under uncertain paternity (where again investment is selected against when some investment never brings about genetic benefits) and gamete size evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bell G (1982) The masterpiece of nature. Croom Helm, London

    Google Scholar 

  • Bode M, Marshall DJ (2007) The quick and the dead? Sperm competition and sexual conflict in sea. Evolution 61:2693–2700

    Article  PubMed  Google Scholar 

  • Bulmer M (1994) Theoretical evolutionary ecology. Sinauer, Sunderland

    Google Scholar 

  • Bulmer MG, Parker GA (2002) The evolution of anisogamy: a game-theoretic approach. Proc R Soc Lond B 269:2381–2388

    Article  CAS  Google Scholar 

  • Cosmides LM, Tooby J (1981) Cytoplasmic inheritance and intragenomic conflict. J Theor Biol 89:83–129

    Article  PubMed  CAS  Google Scholar 

  • Cox PA, Sethian JA (1985) Gamete motion, search and the evolution of anisogamy, oogamy and chemotaxis. Am Nat 125:74–101

    Article  Google Scholar 

  • Crean AJ, Marshall DJ (2008) Gamete plasticity in a broadcast spawning marine invertebrate. Proc Natl Acad Sci 105:13508–13513

    Article  PubMed  CAS  Google Scholar 

  • Crean AJ, Marshall DJ (2009) Coping with environmental uncertainty: dynamic bet hedging as a maternal effect. Phil Trans R Soc Lond B 364:1087–1096

    Article  Google Scholar 

  • Dusenbery DB (2000) Selection for high gamete encounter rates explains the success of male and female mating types. J Theor Biol 202:1–10

    Article  PubMed  CAS  Google Scholar 

  • Dusenbery DB (2006) Selection for high gamete encounter rates explains the evolution of anisogamy using plausible assumptions about size relationships of swimming speed and duration. J Theor Biol 241:33–38

    Article  PubMed  Google Scholar 

  • Eshel I (1983) Evolutionary and continuous stability. J Theor Biol 103:99–111

    Article  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Oxford University Press, Oxford

    Google Scholar 

  • Hoekstra RF (1987) The evolution of sexes. In: Stearns SC (ed) The evolution of sex and its consequences. Birkhäuser, Basel, pp 59–91

    Google Scholar 

  • Houston AI, McNamara JM (2005) John Maynard Smith and the importance of consistency in evolutionary game theory. Biol Philos 20:933–950

    Article  Google Scholar 

  • Houston AI, Székely T, McNamara JM (2005) Conflict between parents over care. Trends Ecol Evol 20:33–38

    Article  PubMed  Google Scholar 

  • Hurst LD (1996) Why are there only two sexes? Proc R Soc Lond B 263:415–422

    Article  Google Scholar 

  • Jennions MD, Kokko H (2010) Sexual selection. In: Westneat DF, Fox CW (eds) Evolutionary behavioral ecology. Oxford University Press, Oxford, pp 343–364

    Google Scholar 

  • Johnstone RA (2008) Kin selection, local competition, and reproductive skew. Evolution 62:2592–2599

    Article  PubMed  Google Scholar 

  • Kalmus H (1932) Über den Erhaltungswert der phänotypischen (morphologischen) Anisogamie und die Entstehung der ersten Geschlechtsunterschiede. Biol Zentralbl 52:716–736 (in German)

    Google Scholar 

  • Kokko H, Jennions MD (2008) Parental investment, sexual selection and sex ratios. J Evol Biol 21:919–948

    Article  PubMed  Google Scholar 

  • Law S, Hutson V (1992) Intracellular symbionts and the evolution of uniparental cytoplasmic inheritance. Proc R Soc Lond B 248:69–77

    Article  CAS  Google Scholar 

  • Lessells CM, Snook RR, Hosken DJ (2009) The evolutionary origin and maintenance of sperm: selection for a small, motile gamete mating type. In: Birkhead TR, Hosken DJ, Pitnick S (eds) Sperm biology: an evolutionary perspective. Academic, New York, pp 43–67

    Google Scholar 

  • Levitan DR (1993) The importance of sperm limitation to the evolution of egg size in marine invertebrates. Am Nat 141:517–536

    Article  PubMed  CAS  Google Scholar 

  • Levitan DR (2000) Optimal egg size in marine invertebrates: theory and phylogenetic analysis of the critical relationship between egg size and development time in echinoids. Am Nat 156:175–192

    Article  PubMed  Google Scholar 

  • Levitan DR (2010) Sexual selection in external fertilizers. In: Westneat DF, Fox CW (eds) Evolutionary behavioral ecology. Oxford University Press, Oxford, pp 365–378

    Google Scholar 

  • Marshall J, McNamara J, Houston A (2010) The state of Darwinian theory. Behav Ecol Sociobiol. doi:10.1007/s00265-010-1121-y

  • Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, London

    Google Scholar 

  • Otto S, Day T (2007) A biologist's guide to mathematical modeling in ecology and evolution. Princeton University Press, Princeton and Oxford, Chapter 12 and electronic supplementary material for chapter 12

    Google Scholar 

  • Parker GA (1982) Why are there so many tiny sperm? Sperm competition and the maintenance of two sexes. J Theor Biol 96:281–294

    Article  PubMed  CAS  Google Scholar 

  • Parker GA, Baker RR, Smith VGF (1972) The origin and evolution of gamete dimorphism and the male-female phenomenon. J Theor Biol 36:181–198

    Article  Google Scholar 

  • Pizzari T, Parker GA (2009) Sperm competition and sperm phenotype. In: Birkhead TR, Hosken DJ, Pitnick S (eds) Sperm biology: an evolutionary perspective. Academic, New York, pp 207–245

    Google Scholar 

  • Queller DC (1997) Why do females care more than males? Proc R Soc Lond B 264:1555–1557

    Article  Google Scholar 

  • Randerson JP, Hurst LD (2001a) The uncertain evolution of the sexes. Trends Ecol Evol 16:571–579

    Article  Google Scholar 

  • Randerson JP, Hurst LD (2001b) A comparative test of a theory for the evolution of anisogamy. Proc R Soc Lond B 268:879–884

    Article  CAS  Google Scholar 

  • Schärer L (2009) Tests of sex allocation theory in simultaneously hermaphroditic animals. Evolution 63:1377–1405

    Article  PubMed  Google Scholar 

  • Scudo FM (1967) The adaptive value of sexual dimorphism. I. anisogamy. Evolution 21:285–291

    Article  Google Scholar 

  • Vance RR (1973) On reproductive strategies in marine benthic invertebrates. Am Nat 107:339–352

    Article  Google Scholar 

  • West SA (2009) Sex allocation. Princeton University Press, Princeton

    Google Scholar 

  • Wiese L, Wiese W, Edwards DA (1979) Inducible anisogamy and the evolution of oogamy from isogamy. Ann Bot 44:131–139

    Google Scholar 

Download references

Acknowledgements

We thank the organizers of the MMEE meeting in Bristol for their successful efforts to create a stimulating atmosphere and for inviting us to write this work. We also thank Michael Jennions and two anonymous reviewers for comments, and the Academy of Finland and the Finnish Cultural Foundation for funding; we declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jussi Lehtonen.

Additional information

Communicated by Guest Editor J. McNamara

This contribution is part of the Special Issue “Mathematical Models in Ecology and Evolution: Darwin 200” (see Marshall et al. 2010).

Appendix 1

Appendix 1

Our aim is to find the fitness gradients \( \frac{{\partial {{\hat{W}}_y}}}{{\partial {{\hat{m}}_y}}}\left| {_{{{{\hat{m}}_y} = {m_y}}}} \right. \) and \( \frac{{\partial {{\hat{W}}_x}}}{{\partial {{\hat{m}}_x}}}\left| {_{{{{\hat{m}}_x} = {m_x}}}} \right. \), the second derivatives \( \frac{{{\partial^2}{{\hat{W}}_y}}}{{\partial \hat{m}_y^2}}\left| {_{{{{\hat{m}}_y} = {m_y}}}} \right. \) and \( \frac{{{\partial^2}{{\hat{W}}_x}}}{{\partial \hat{m}_x^2}}\left| {_{{{{\hat{m}}_x} = {m_x}}}} \right. \) and the matrix \( {\hbox{C}} = \left( {\begin{array}{*{20}{c}} {\frac{\partial }{{\partial {m_x}}}\left( {\frac{{\partial {{\hat{W}}_x}}}{{\partial {{\hat{m}}_x}}}\left| {_{{{{\hat{m}}_x} = {m_x}}}} \right.} \right)\quad \frac{\partial }{{\partial {m_y}}}\left( {\frac{{\partial {{\hat{W}}_x}}}{{\partial {{\hat{m}}_x}}}\left| {_{{{{\hat{m}}_x} = {m_x}}}} \right.} \right)} \hfill \\{\frac{\partial }{{\partial {m_x}}}\left( {\frac{{\partial {{\hat{W}}_y}}}{{\partial {{\hat{m}}_y}}}\left| {_{{{{\hat{m}}_y} = {m_y}}}} \right.} \right)\quad \frac{\partial }{{\partial {m_y}}}\left( {\frac{{\partial {{\hat{W}}_y}}}{{\partial {{\hat{m}}_y}}}\left| {_{{{{\hat{m}}_y} = {m_y}}}} \right.} \right)} \hfill \\\end{array} } \right) \) for evaluating the direction of evolution, evolutionary stability, and convergence stability respectively. We derive here the equations for the case where the mutant individual is of mating type y. Equivalent equations for type x are obtained simply by exchanging the indices x and y in all equations. A “hat” (such as in \( {\hat{m}_y} \)) is used to denote the mutant individual. For gamete numbers we will use the notation N x , N y , and \( {\hat{N}_y} \) instead of the longer forms \( {N_x}({m_x},{m_y},{\hat{m}_y}) \), \( {N_y}({m_x},{m_y},{\hat{m}_y}), \) and \( {\hat{N}_y}({m_x},{m_y},{\hat{m}_y}) \). However, it is important to keep in mind that these are functions of all three variables when carrying out the differentiations below.

Note that although in the main text we use fixed functions for gamete production rate, gamete mortality rate, and zygote survival probability, the equations below are given in a general form, and can flexibly accommodate alternative forms for these functions. The model also allows independent values for A x and A y , but in the main text we limit ourselves to cases with an even adult sex ratio (A x  = A y ).

All the equations that follow are derived from the time dynamics Eqs. (A1a–A1c). For their biological interpretation, see the main text concerning Eqs. (3a–3b) and (4a–4c). Despite the fact that some of the resulting equations are relatively complex and difficult to interpret by themselves, the full biology of the system is already contained in Eqs. (A1a–A1c) together with the functions for gamete production, gamete mortality, and zygote survival. The following equations are simply tools to determine the behavior of the system.

$$ \left\{ {\begin{array}{*{20}{c}} {\frac{{d{N_x}}}{{dt}} = {A_x}H({m_x}) - \mu ({m_x}){N_x} - \gamma {N_x}({N_y} + {{\hat{N}}_y}) = 0} \hfill \\{\frac{{d{N_y}}}{{dt}} = ({A_y} - 1)H({m_y}) - \mu ({m_y}){N_y} - \gamma {N_x}{N_y} = 0} \hfill \\{\frac{{d{{\hat{N}}_y}}}{{dt}} = H({{\hat{m}}_y}) - \mu ({{\hat{m}}_y}){{\hat{N}}_y} - \gamma {N_x}{{\hat{N}}_y} = 0} \hfill \\\end{array} } \right. $$
(A1a–A1c)

The fitness of the mutant individual is given by its rate of fertilizations (\( \gamma {N_x}{\hat{N}_y} \), or alternatively \( H({\hat{m}_y}) - \mu ({\hat{m}_y}){\hat{N}_y} \) from Eq. A1c) multiplied by the survival probability \( f({m_x},{\hat{m}_y}) \) of its zygotes:

$$ {\hat{W}_y} = \gamma {N_x}{\hat{N}_y}f({m_x},{\hat{m}_y}) = (H({\hat{m}_y}) - \mu ({\hat{m}_y}){\hat{N}_y})f({m_x},{\hat{m}_y}) $$
(A2)

Therefore the selection differential is

$$ \frac{{\partial {{\hat{W}}_y}}}{{\partial {{\hat{m}}_y}}}\left| {_{{{{\hat{m}}_y} = {m_y}}}} \right. = \left[ {(H({{\hat{m}}_y}) - {{\hat{N}}_y}\mu ({{\hat{m}}_y}))\frac{{\partial f({m_x},{{\hat{m}}_y})}}{{\partial {{\hat{m}}_y}}} + f({m_x},{{\hat{m}}_y})\left( {\frac{{dH({{\hat{m}}_y})}}{{d{{\hat{m}}_y}}} - {{\hat{N}}_y}\frac{{d\mu ({{\hat{m}}_y})}}{{d{{\hat{m}}_y}}} - \mu ({{\hat{m}}_y})\frac{{\partial {{\hat{N}}_y}}}{{\partial {{\hat{m}}_y}}}} \right)} \right]\left| {_{{{{\hat{m}}_y} = {m_y}}}} \right. $$
(A3)

and the second derivative

$$ \begin{array}{*{20}{c}} {\frac{{{\partial^2}{{\hat{W}}_y}}}{{\partial \hat{m}_y^2}}\left| {_{{{{\hat{m}}_y} = {m_y}}}} \right.} = {\left[ {(H({{\hat{m}}_y}) - {{\hat{N}}_y}\mu ({{\hat{m}}_y}))\frac{{\partial {f^2}({m_x},{m_y})}}{{\partial \hat{m}_y^2}} + 2\frac{{\partial f({m_x},{{\hat{m}}_y})}}{{\partial {{\hat{m}}_y}}}\left( {\frac{{dH({{\hat{m}}_y})}}{{d{{\hat{m}}_y}}} - {{\hat{N}}_y}\frac{{d\mu ({{\hat{m}}_y})}}{{d{{\hat{m}}_y}}} - \mu ({{\hat{m}}_y})\frac{{\partial {{\hat{N}}_y}}}{{\partial {{\hat{m}}_y}}}} \right) + \ldots } \right.} \hfill \\{\left. { \ldots f({m_x},{{\hat{m}}_y})\left( {\frac{{{d^2}H({{\hat{m}}_y})}}{{d\hat{m}_y^2}} - {{\hat{N}}_y}\frac{{{d^2}\mu ({{\hat{m}}_y})}}{{d\hat{m}_y^2}} - 2\frac{{d\mu ({{\hat{m}}_y})}}{{d{{\hat{m}}_y}}}\frac{{\partial {{\hat{N}}_y}}}{{\partial {{\hat{m}}_y}}} - \mu ({{\hat{m}}_y})\frac{{{\partial^2}{{\hat{N}}_y}}}{{\partial \hat{m}_y^2}}} \right)} \right]\left| {_{{{{\hat{m}}_y} = {m_y}}}} \right.} \hfill \\\end{array} $$
(A4)

Everything in equations (A3) and (A4) is straightforward to derive, with the exception of \( \frac{{\partial {N_x}}}{{\partial {{\hat{m}}_y}}},\;\frac{{\partial {N_y}}}{{\partial {{\hat{m}}_y}}},\;\frac{{\partial {{\hat{N}}_y}}}{{\partial {{\hat{m}}_y}}}\;{\hbox{and }}\frac{{\partial {{\hat{N}}_y}}}{{\partial \hat{m}_y^2}} \). These can be found by using implicit differentiation with respect to \( {\hat{m}_y} \) on equations (A1a–A1c). Differentiating once leads to the equations

$$ \left\{ {\begin{array}{*{20}{c}} {\gamma ({N_y} + {{\hat{N}}_y})\frac{{\partial {N_x}}}{{\partial {{\hat{m}}_y}}} + \mu ({m_x})\frac{{\partial {N_x}}}{{\partial {{\hat{m}}_y}}} + \gamma {N_x}\left( {\frac{{\partial {N_y}}}{{\partial {{\hat{m}}_y}}} + \frac{{\partial {{\hat{N}}_y}}}{{\partial {{\hat{m}}_y}}}} \right) = 0} \hfill \\{\gamma {N_y}\frac{{\partial {N_x}}}{{\partial {{\hat{m}}_y}}} + (\gamma {N_x} + \mu ({m_y}))\frac{{\partial {N_y}}}{{\partial {{\hat{m}}_y}}} = 0} \hfill \\{{{\hat{N}}_y}\left( {\frac{{d\mu ({{\hat{m}}_y})}}{{d{{\hat{m}}_y}}} + \gamma \frac{{\partial {N_x}}}{{\partial {{\hat{m}}_y}}}} \right) + (\gamma {N_x} + \mu ({{\hat{m}}_y}))\frac{{\partial {{\hat{N}}_y}}}{{\partial {{\hat{m}}_y}}} = \frac{{dH({{\hat{m}}_y})}}{{d{{\hat{m}}_y}}}} \hfill \\\end{array} } \right. $$
(A5a–A5c)

and after differentiating twice we have

$$ \left\{ {\begin{array}{*{20}{c}} {2\gamma \frac{{\partial {N_x}}}{{\partial {{\hat{m}}_y}}}\left( {\frac{{\partial {N_y}}}{{\partial {{\hat{m}}_y}}} + \frac{{\partial {{\hat{N}}_y}}}{{\partial {{\hat{m}}_y}}}} \right) + \gamma ({N_y} + {{\hat{N}}_y})\frac{{{\partial^2}{N_x}}}{{\partial \hat{m}_y^2}} + \mu ({m_x})\frac{{{\partial^2}{N_x}}}{{\partial \hat{m}_y^2}} + \gamma {N_x}\left( {\frac{{{\partial^2}{N_y}}}{{\partial \hat{m}_y^2}} + \frac{{{\partial^2}{{\hat{N}}_y}}}{{\partial \hat{m}_y^2}}} \right) = 0} \hfill \\{2\gamma \frac{{\partial {N_x}}}{{\partial {{\hat{m}}_y}}}\frac{{\partial {N_y}}}{{\partial {{\hat{m}}_y}}} + \gamma {N_y}\frac{{{\partial^2}{N_x}}}{{\partial \hat{m}_y^2}} + \left( {\gamma {N_x} + \mu ({m_y})} \right)\frac{{{\partial^2}{N_y}}}{{\partial \hat{m}_y^2}} = 0} \hfill \\{2\left( {\frac{{d\mu ({{\hat{m}}_y})}}{{d{{\hat{m}}_y}}} + \gamma \frac{{\partial {N_x}}}{{\partial {{\hat{m}}_y}}}} \right)\frac{{\partial {{\hat{N}}_y}}}{{\partial {{\hat{m}}_y}}} + {{\hat{N}}_y}\left( {\frac{{{d^2}\mu ({{\hat{m}}_y})}}{{d\hat{m}_y^2}} + \gamma \frac{{{\partial^2}{N_x}}}{{\partial \hat{m}_y^2}}} \right) + (\gamma {N_x} + \mu ({{\hat{m}}_y}))\frac{{{\partial^2}{{\hat{N}}_y}}}{{\partial \hat{m}_y^2}} = \frac{{{d^2}H({{\hat{m}}_y})}}{{d\hat{m}_y^2}}} \hfill \\\end{array} } \right. $$
(A6a–A6c)

Now we can solve \( \frac{{\partial {N_x}}}{{\partial {{\hat{m}}_y}}},\;\frac{{\partial {N_y}}}{{\partial {{\hat{m}}_y}}}{\hbox{, and }}\frac{{\partial {{\hat{N}}_y}}}{{\partial {{\hat{m}}_y}}} \) from Eqs. (A5a–A5c):

$$ \left\{ {\begin{array}{*{20}{c}} {\frac{{\partial {N_x}}}{{\partial {{\hat{m}}_y}}} = \frac{{\gamma {N_x}\left( {\gamma Nx + \mu \left( {{m_y}} \right)} \right)\left( { - \frac{{dH\left( {{{\hat{m}}_y}} \right)}}{{d{{\hat{m}}_y}}} + {{\hat{N}}_y}\frac{{d\mu \left( {{{\hat{m}}_y}} \right)}}{{d{{\hat{m}}_y}}}} \right)}}{{{\gamma^2}N_x^2\mu \left( {{m_x}} \right) + \left( {\gamma {N_y} + \gamma {{\hat{N}}_y} + \mu \left( {{m_x}} \right)} \right)\mu \left( {{m_y}} \right)\mu \left( {{{\hat{m}}_y}} \right) + \gamma {N_x}\left( {\gamma {N_y}\mu \left( {{m_y}} \right) + \gamma {{\hat{N}}_y}\mu \left( {{{\hat{m}}_y}} \right) + \mu \left( {{m_x}} \right)\left[ {\mu \left( {{m_y}} \right) + \mu \left( {{{\hat{m}}_y}} \right)} \right]} \right)}}} \hfill \\{\frac{{\partial {N_y}}}{{\partial {{\hat{m}}_y}}} = - \frac{{\gamma^2 {N_x} {N_y} \left( { - \frac{{dH\left( {{{\hat{m}}_y}} \right)}}{{d{{\hat{m}}_y}}} + {{\hat{N}}_y}\frac{{d\mu \left( {{{\hat{m}}_y}} \right)}}{{d{{\hat{m}}_y}}}} \right)}}{{{\gamma^2}N_x^2\mu \left( {{m_x}} \right) + \left( {\gamma {N_y} + \gamma {{\hat{N}}_y} + \mu \left( {{m_x}} \right)} \right)\mu \left( {{m_y}} \right)\mu \left( {{{\hat{m}}_y}} \right) + \gamma {N_x}\left( {\gamma {N_y}\mu \left( {{m_y}} \right) + \gamma {{\hat{N}}_y}\mu \left( {{{\hat{m}}_y}} \right) + \mu \left( {{m_x}} \right)\left[ {\mu \left( {{m_y}} \right) + \mu \left( {{{\hat{m}}_y}} \right)} \right]} \right)}}} \hfill \\{\frac{{\partial {{\hat{N}}_y}}}{{\partial {{\hat{m}}_y}}} = - \frac{{\left( {\gamma {N_x}\left[ {\gamma {{\hat{N}}_y} + \mu \left( {{m_x}} \right)} \right] + \left[ {\gamma {N_y} + \gamma {{\hat{N}}_y} + \mu \left( {{m_x}} \right)} \right]\mu \left( {{m_y}} \right)} \right)\left( { - \frac{{dH\left( {{{\hat{m}}_y}} \right)}}{{d{{\hat{m}}_y}}} + {{\hat{N}}_y}\frac{{d\mu \left( {{{\hat{m}}_y}} \right)}}{{d{{\hat{m}}_y}}}} \right)}}{{{\gamma^2}N_x^2\mu \left( {{m_x}} \right) + \left( {\gamma {N_y} + \gamma {{\hat{N}}_y} + \mu \left( {{m_x}} \right)} \right)\mu \left( {{m_y}} \right)\mu \left( {{{\hat{m}}_y}} \right) + \gamma {N_x}\left( {\gamma {N_y}\mu \left( {{m_y}} \right) + \gamma {{\hat{N}}_y}\mu \left( {{{\hat{m}}_y}} \right) + \mu \left( {{m_x}} \right)\left[ {\mu \left( {{m_y}} \right) + \mu \left( {{{\hat{m}}_y}} \right)} \right]} \right)}}} \hfill \\\end{array} } \right. $$
(A7a–A7c)

and \( \frac{{{\partial^2}{{\hat{N}}_y}}}{{\partial \hat{m}_y^2}} \) from equations (A6a–A6c):

$$ \begin{array}{*{20}{c}} {\frac{{{\partial^2}{{\hat{N}}_y}}}{{\partial \hat{m}_y^2}} = } \hfill \\{\frac{{ - (\gamma {N_x}\left[ {\gamma {{\hat{N}}_y} + \mu ({m_x})} \right] + \left[ {\gamma {N_y} + \gamma {{\hat{N}}_y} + \mu ({m_x})} \right]\mu ({m_y}))\left( { - \frac{{{d^2}H({{\hat{m}}_y})}}{{d\hat{m}_y^2}} + {{\hat{N}}_y}\frac{{{d^2}\mu ({{\hat{m}}_y})}}{{d\hat{m}_y^2}} + 2\left( {\frac{{d\mu ({{\hat{m}}_y})}}{{d{{\hat{m}}_y}}} + \gamma \frac{{\partial {N_x}}}{{\partial {{\hat{m}}_y}}}} \right)\frac{{\partial {{\hat{N}}_y}}}{{\partial {{\hat{m}}_y}}}} \right) + 2{\gamma^2}{{\hat{N}}_y}\frac{{\partial {N_x}}}{{\partial {{\hat{m}}_y}}}\left( {\gamma {N_x}\frac{{\partial {N_y}}}{{\partial {{\hat{m}}_y}}} + \mu ({m_y})\left( {\frac{{\partial {N_y}}}{{\partial {{\hat{m}}_y}}} + \frac{{\partial {{\hat{N}}_y}}}{{\partial {{\hat{m}}_y}}}} \right)} \right)}}{{{\gamma^2}N_x^2\mu ({m_x}) + \left( {\gamma {N_y} + \gamma {{\hat{N}}_y} + \mu ({m_x})} \right)\mu ({m_y})\mu ({{\hat{m}}_y}) + \gamma {N_x}(\gamma {N_y}\mu ({m_y}) + \gamma {{\hat {N}}}\mu ({{\hat{m}}_y}) + \mu ({m_x})\left[ {\mu ({m_y}) + \mu ({{\hat{m}}_y})} \right])}}} \hfill \\\end{array} . $$
(A8)

Next, we solve equations (A1a–A1c) for N x , N y , and \( {\hat{N}_y} \) when \( {\hat{m}_y} = {m_y} \):

$$ \left\{ {\begin{array}{*{20}{c}} {{{\left. {{N_x}} \right|}_{{{{\hat{m}}_y} = {m_y}}}} = \frac{{{A_x}\gamma H({m_x}) - {A_y}\gamma H({m_y}) - \mu ({m_x})\mu ({m_y}) + \sqrt {{4{A_x}\gamma H({m_x})\mu ({m_y}) + {{\left[ { - {A_x}\gamma H({m_x}) + {A_y}\gamma H({m_y}) + \mu ({m_x})\mu ({m_y})} \right]}^2}}} }}{{2\gamma \mu ({m_x})}}} \hfill \\{{{\left. {{N_y}} \right|}_{{{{\hat{m}}_y} = {m_y}}}} = \left( {{A_y} - 1} \right)\left( {{{\hat{N}}_y}\left| {_{{{{\hat{m}}_y} = {m_y}}}} \right.} \right)} \hfill \\{{{\left. {{{\hat{N}}_y}} \right|}_{{{{\hat{m}}_y} = {m_y}}}} = \frac{{ - {A_x}\gamma H({m_x}) + {A_y}\gamma H({m_y}) - \mu ({m_x})\mu ({m_y}) + \sqrt {{4{A_x}\gamma H({m_x})\mu ({m_x})\mu ({m_y}) + {{\left[ { - {A_x}\gamma H({m_x}) + {A_y}\gamma H({m_y}) + \mu ({m_x})\mu ({m_y})} \right]}^2}}} }}{{2Ay\gamma \mu ({m_y})}}} \hfill \\\end{array} } \right.. $$
(A9a–A9c)

Finally we get \( \frac{{\partial {{\hat{W}}_y}}}{{\partial {{\hat{m}}_y}}}\left| {_{{{{\hat{m}}_y} = {m_y}}}} \right. \) by sequentially plugging Eqs. (A9a–A9c) into (A7c), and then plugging this result together with (A9c) into (A3). Similarly \( \frac{{{\partial^2}{{\hat{W}}_y}}}{{\partial \hat{m}_y^2}}\left| {_{{{{\hat{m}}_y} = {m_y}}}} \right. \) is calculated by the sequence (A9) → (A7) → (A8) → (A4).

An analytic expression for the convergence stability matrix C can be found by following steps similar to the ones described above, but both the methods and the resulting equations are more complex. We omit them from this appendix, but the equations are available from the authors upon request.

We now have the tools to find the equilibrium points and evolutionary trajectories for gamete sizes, and to determine their stability. The existence of a closed form analytic solution for the equilibrium points depends on the form of zygote fitness, gamete mortality, and gamete production functions used. With the functions we use in the main text, analytic solutions are not possible. However, we can use the following equation to find the equilibriums and plot the evolutionary trajectories to an arbitrary level of accuracy:

$$ \left( {\begin{array}{*{20}{c}} {{m_{{{x_{{i + 1}}}}}}} \hfill \\{{m_{{{y_{{i + 1}}}}}}} \hfill \\\end{array} } \right) = \left( {\begin{array}{*{20}{c}} {{m_{{{x_i}}}}} \hfill \\{{m_{{{y_i}}}}} \hfill \\\end{array} } \right) + \left( {\begin{array}{*{20}{c}} {\frac{{\partial {{\hat{W}}_x}}}{{\partial {{\hat{m}}_x}}}\left| {_{{{{\hat{m}}_x} = {m_{{{x_i}}}}}}} \right.} \hfill \\{\frac{{\partial {{\hat{W}}_y}}}{{\partial {{\hat{m}}_y}}}\left| {_{{{{\hat{m}}_y} = {m_{{{y_i}}}}}}} \right.} \hfill \\\end{array} } \right)\Delta $$
(A10)

where Δ is a sufficiently small number.

Once the equilibria \( m_x^{*} \) and \( m_y^{*} \) are found, the following conditions must be satisfied:

  1. 1.

    \( \frac{{\partial {{\hat{W}}_x}}}{{\partial {{\hat{m}}_x}}}\left| {_{{{{\hat{m}}_x} = m_x^{*}}}\;} \right. = 0,\;\frac{{\partial {{\hat{W}}_y}}}{{\partial {{\hat{m}}_y}}}\left| {_{{{{\hat{m}}_y} = m_y^{*}}}\;} \right. = 0; \) this means there is no directional selection on gamete size

  2. 2.

    \( \frac{{{\partial^2}{{\hat{W}}_x}}}{{\partial \hat{m}_x^2}}\left| {_{{{{\hat{m}}_x} = m_x^{*}}}\;} \right. \leqslant 0,\;\frac{{{\partial^2}{{\hat{W}}_y}}}{{\partial \hat{m}_y^2}}\left| {_{{{{\hat{m}}_y} = m_y^{*}}}\;} \right. \leqslant 0; \) this shows that the equilibrium is an ESS.

  3. 3.

    The real parts of the eigenvalues of the matrix C must be negative to show convergence stability.

Table 1 Conditions for the equilibria in Figs. 3 and 5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehtonen, J., Kokko, H. Two roads to two sexes: unifying gamete competition and gamete limitation in a single model of anisogamy evolution. Behav Ecol Sociobiol 65, 445–459 (2011). https://doi.org/10.1007/s00265-010-1116-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-010-1116-8

Keywords

Navigation