Skip to main content
Log in

Calcaneal fractures: 3D-printing model to assist spatial weaving of percutaneous screws versus conventional open fixation—a retrospective cohort study

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

This study compared the clinical effectiveness and wound complications of a three-dimensional model-assisted spatial weaving screw fixation (3D-SWSF) versus open reduction and internal fixation (ORIF) via an L-shaped extensile lateral approach for calcaneal fractures.

Methods

This single-centre retrospective cohort study was conducted with two cohort groups in which patients with Sanders II and III calcaneal fractures underwent 3D-SWSF or conventional ORIF. The clinical outcome measures included operation duration, time to operation, wound complications, blood loss volume, hospital stays, American Orthopedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot score, and visual analog scale (VAS) score. The pre-operative, post-operative, and one-year follow-up Gissane’s angle (GA), Böhler’s angle (BA), height, and width and length of the calcaneal fractures were also compared between the two groups.

Results

From Oct 2015 to Oct 2019, 31 patients received 3D-SWSF and 41 received conventional ORIF. A total of 11 (26.8%) patients in ORIF group had wound complications, compared with only two (6.5%) in 3D-SWSF group (p = 0.032). Operative time, blood loss, and hospital stay in 3D-SWSF group were lesser than those in ORIF group. The patients treated with 3D-SWSF had better AOFAS and VAS scores than those treated with ORIF at the last follow-up. The post-operative and one-year follow-up radiographic indexes as well as the GA, BA, length, width, and height of the calcaneal fractures were relatively comparable between the two groups.

Conclusion

Our study revealed that 3D-SWSF could effectively decrease the risk of wound complications, shorten operation time, reduce length of hospitalization, and improve post-operative rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

Abbreviations

3D:

Three-dimensional

3D-SWSF:

3D model-assisted spatial weaving screw fixation

AOFAS:

American Orthopedic Foot and Ankle Society

BA:

Böhler’s angle

DIACF:

Displaced intra-articular calcaneal fractures

ELA:

Extensile lateral approach

GA:

Gissane’s angle

HAS:

High axis screws

LAS:

Long axis screws

ORIF:

Open reduction and internal fixation

SS:

Sustentacular screws

VAS:

Visual analog scale

References

  1. Benson E, Conroy C, Hoyt DB, Eastman AB, Pacyna S, Smith J, Kennedy F, Velky T, Sise M (2007) Calcaneal fractures in occupants involved in severe frontal motor vehicle crashes. Accid Anal Prev 39(4):794–799. https://doi.org/10.1016/j.aap.2006.11.010

    Article  PubMed  Google Scholar 

  2. Jiang N, Lin QR, Diao XC, Wu L, Yu B (2012) Surgical versus nonsurgical treatment of displaced intra-articular calcaneal fracture: a meta-analysis of current evidence base. Int Orthop 36(8):1615–1622. https://doi.org/10.1007/s00264-012-1563-0

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rammelt S, Amlang M, Barthel S, Gavlik JM, Zwipp H (2010) Percutaneous treatment of less severe intraarticular calcaneal fractures. Clin Orthop Relat Res 468(4):983–990. https://doi.org/10.1007/s11999-009-0964-x

    Article  PubMed  Google Scholar 

  4. Weng QH, Dai GL, Tu QM, Liu Y, Lutchooman V, Hong JJ, Yu Y (2020) Comparison between Percutaneous Screw fixation and plate fixation via sinus tarsi approach for calcaneal fractures: an 8–10-year follow-up study. Orthop Surg 12(1):124–132. https://doi.org/10.1111/os.12597

    Article  PubMed  Google Scholar 

  5. Buckley R, Tough S, McCormack R, Pate G, Leighton R, Petrie D, Galpin R (2002) Operative compared with nonoperative treatment of displaced intra-articular calcaneal fractures: a prospective, randomized, controlled multicenter trial. J Bone Joint Surg Am 84(10):1733–1744. https://doi.org/10.2106/00004623-200210000-00001

    Article  PubMed  Google Scholar 

  6. Buzzi R, Sermi N, Soviero F, Bianco S, Campanacci DA (2019) Displaced intra-articular fractures of the calcaneus: ORIF through an extended lateral approach. Injury 50(Suppl 2):S2–S7. https://doi.org/10.1016/j.injury.2019.01.037

    Article  PubMed  Google Scholar 

  7. Basile A (2010) Operative versus nonoperative treatment of displaced intra-articular calcaneal fractures in elderly patients. J Foot Ankle Surg 49(1):25–32. https://doi.org/10.1053/j.jfas.2009.08.001

    Article  PubMed  Google Scholar 

  8. Dorr MC, Backes M, Luitse JS, de Jong VM, Schepers T (2016) Complications of kirschner wire use in open reduction and internal fixation of calcaneal fractures. J Foot Ankle Surg 55(5):915–917. https://doi.org/10.1053/j.jfas.2016.04.003

    Article  PubMed  Google Scholar 

  9. Mehta CR, An VVG, Phan K, Sivakumar B, Kanawati AJ, Suthersan M (2018) Extensile lateral versus sinus tarsi approach for displaced, intra-articular calcaneal fractures: a meta-analysis. J Orthop Surg Res 13(1):243. https://doi.org/10.1186/s13018-018-0943-6

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wei N, Zhou Y, Chang W, Zhang Y, Chen W (2017) Displaced intra-articular calcaneal fractures: classification and treatment. Orthopedics 40(6):e921–e929. https://doi.org/10.3928/01477447-20170907-02

    Article  PubMed  Google Scholar 

  11. Gotha HE, Zide JR (2017) Current controversies in management of calcaneus fractures. Orthop Clin North Am 48(1):91–103. https://doi.org/10.1016/j.ocl.2016.08.005

    Article  PubMed  Google Scholar 

  12. Sampath Kumar V, Marimuthu K, Subramani S, Sharma V, Bera J, Kotwal P (2014) Prospective randomized trial comparing open reduction and internal fixation with minimally invasive reduction and percutaneous fixation in managing displaced intra-articular calcaneal fractures. Int Orthop 38(12):2505–2512. https://doi.org/10.1007/s00264-014-2501-0

    Article  PubMed  Google Scholar 

  13. Waris E, Konttinen YT, Ashammakhi N, Suuronen R, Santavirta S (2004) Bioabsorbable fixation devices in trauma and bone surgery: current clinical standing. Expert Rev Med Devices 1(2):229–240. https://doi.org/10.1586/17434440.1.2.229

    Article  PubMed  Google Scholar 

  14. Weinraub GM (2019) David MS (2019) Sinus tarsi approach with subcutaneously delivered plate fixation for displaced intra-articular calcaneal fractures. Clin Podiatr Med Surg 36(2):225–231. https://doi.org/10.1016/j.cpm.2018.10.005

    Article  PubMed  Google Scholar 

  15. Khazen G, Rassi CK (2020) Sinus tarsi approach for calcaneal fractures: the new gold standard? Foot Ankle Clin 25(4):667–681. https://doi.org/10.1016/j.fcl.2020.08.003

    Article  PubMed  Google Scholar 

  16. Bai L, Hou YL, Lin GH, Zhang X, Liu GQ, Yu B (2018) Sinus tarsi approach (STA) versus extensile lateral approach (ELA) for treatment of closed displaced intra-articular calcaneal fractures (DIACF): a meta-analysis. Orthop Traumatol Surg Res 104(2):239–244. https://doi.org/10.1016/j.otsr.2017.12.015

    Article  CAS  PubMed  Google Scholar 

  17. Marouby S, Cellier N, Mares O, Kouyoumdjian P, Coulomb R (2020) Percutaneous arthroscopic calcaneal osteosynthesis for displaced intra-articular calcaneal fractures: systematic review and surgical technique. Foot Ankle Surg 26(5):503–508. https://doi.org/10.1016/j.fas.2019.07.002

    Article  PubMed  Google Scholar 

  18. Yeap EJ, Rao J, Pan CH, Soelar SA, Younger ASE (2016) Is arthroscopic assisted percutaneous screw fixation as good as open reduction and internal fixation for the treatment of displaced intra-articular calcaneal fractures? Foot Ankle Surg 22(3):164–169. https://doi.org/10.1016/j.fas.2015.06.008

    Article  PubMed  Google Scholar 

  19. Peng Y, Liu J, Zhang G, Ji X, Zhang W, Zhang L, Tang P (2019) Reduction and functional outcome of open reduction plate fixation versus minimally invasive reduction with percutaneous screw fixation for displaced calcaneus fracture: a retrospective study. J Orthop Surg Res 14(1):124. https://doi.org/10.1186/s13018-019-1162-5

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tantavisut S, Phisitkul P, Westerlind BO, Gao Y, Karam MD, Marsh JL (2017) Percutaneous reduction and screw fixation of displaced intra-articular fractures of the calcaneus. Foot Ankle Int 38(4):367–374. https://doi.org/10.1177/1071100716679160

    Article  PubMed  Google Scholar 

  21. Chen L, Zhang G, Hong J, Lu X, Yuan W (2011) Comparison of percutaneous screw fixation and calcium sulfate cement grafting versus open treatment of displaced intra-articular calcaneal fractures. Foot Ankle Int 32(10):979–985. https://doi.org/10.3113/FAI.2011.0979

    Article  PubMed  Google Scholar 

  22. Jin C, Weng D, Yang W, He W, Liang W, Qian Y (2017) Minimally invasive percutaneous osteosynthesis versus ORIF for Sanders type II and III calcaneal fractures: a prospective, randomized intervention trial. J Orthop Surg Res 12(1):10. https://doi.org/10.1186/s13018-017-0511-5

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sanders R (2000) Displaced intra-articular fractures of the calcaneus. J Bone Joint Surg Am 82(2):225–250. https://doi.org/10.2106/00004623-200002000-00009

    Article  CAS  PubMed  Google Scholar 

  24. Soni A, Vollans S, Malhotra K, Mann C (2014) Association between smoking and wound infection rates following calcaneal fracture fixation. Foot Ankle Spec 7(4):266–270. https://doi.org/10.1177/1938640014537301

    Article  PubMed  Google Scholar 

  25. Abidi NA, Dhawan S, Gruen GS, Vogt MT, Conti SF (1998) Wound-healing risk factors after open reduction and internal fixation of calcaneal fractures. Foot Ankle Int 19(12):856–861. https://doi.org/10.1177/107110079801901211

    Article  CAS  PubMed  Google Scholar 

  26. Li M, Lian X, Yang W, Ding K, Jin L, Jiao Z, Ma L, Chen W (2020) Percutaneous reduction and hollow screw fixation versus open reduction and internal fixation for treating displaced intra-articular calcaneal fractures. Med Sci Monit 26:e926833. https://doi.org/10.12659/MSM.926833

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dai G, Shao Z, Weng Q, Zheng Y, Hong J, Lu X (2020) Percutaneous reduction, cannulated screw fixation and calcium sulfate cement grafting assisted by 3D printing technology in the treatment of calcaneal fractures. J Orthop Sci S0949–2658(20):30193–30197. https://doi.org/10.1016/j.jos.2020.06.008

    Article  Google Scholar 

  28. Chung KJ, Hong DY, Kim YT, Yang I, Park YW, Kim HN (2014) Preshaping plates for minimally invasive fixation of calcaneal fractures using a real-size 3D-printed model as a preoperative and intraoperative tool. Foot Ankle Int 35(11):1231–1236. https://doi.org/10.1177/1071100714544522

    Article  PubMed  Google Scholar 

  29. Javaid M, Haleem A (2018) Additive manufacturing applications in orthopaedics: a review. J Clin Orthop Trauma 9(3):202–206. https://doi.org/10.1016/j.jcot.2018.04.008

    Article  PubMed  PubMed Central  Google Scholar 

  30. Benirschke SK, Sangeorzan BJ (1993) Extensive intraarticular fractures of the foot. Surgical management of calcaneal fractures. Clin Orthop Relat Res 292:128–134

    Article  Google Scholar 

  31. Lamichhane A, Mahara D (2013) Management of intra-articular fracture of calcaneus by combined percutaneous and minimal internal fixation. J Nepal Health Res Counc 11(23):70–75

    CAS  PubMed  Google Scholar 

  32. DeWall M, Henderson CE, McKinley TO, Phelps T, Dolan L, Marsh JL (2010) Percutaneous reduction and fixation of displaced intra-articular calcaneus fractures. J Orthop Trauma 24(8):466–472. https://doi.org/10.1097/BOT.0b013e3181defd74

    Article  PubMed  Google Scholar 

  33. Khurana A, Dhillon MS, Prabhakar S, John R (2017) Outcome evaluation of minimally invasive surgery versus extensile lateral approach in management of displaced intra-articular calcaneal fractures: a randomised control trial. Foot (Edinb) 31:23–30. https://doi.org/10.1016/j.foot.2017.01.008

    Article  Google Scholar 

  34. Yeo JH, Cho HJ, Lee KB (2015) Comparison of two surgical approaches for displaced intra-articular calcaneal fractures: sinus tarsi versus extensile lateral approach. BMC Musculoskelet Disord 16:63. https://doi.org/10.1186/s12891-015-0519-0

    Article  PubMed  PubMed Central  Google Scholar 

  35. Persson J, Peters S, Haddadin S, O’Loughlin PF, Krettek C, Gaulke R (2015) The prognostic value of radiologic parameters for long-term outcome assessment after an isolated unilateral calcaneus fracture. Technol Health Care 23(3):285–298. https://doi.org/10.3233/THC-140890

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to EditSprings (https://www.editsprings.com/) for the expert linguistic services provided.

Funding

This study was supported by the Medical and Health Technology Project of Zhejiang Province (No. 2019PY073, No. 2021PY072); Science and Technology research on public welfare project of Ningbo, Zhejiang Province (No. 2019C50050); and the Scientific Technology project of Agriculture and Social Development of Yinzhou, Ningbo, Zhejiang Province (No. 20180137, No. 20200132).

Author information

Authors and Affiliations

Authors

Contributions

ZY provided the clinical data included in the manuscript. ZY and YY participated in the treatment decisions. ZY and GY wrote the manuscript draft. WQ, CJ, and GY revised it critically and approved the modified text. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yunfeng Yang.

Ethics declarations

Ethics approval and consent to participate

The study was approved by the Ethics Committee of the Ningbo No. 6 Hospital (No.2018–006). In this retrospective study, all participants gave their written informed consent to participate in the study.

Consent for publication

All participants gave their written informed consent to publish the obtained data of the current study.

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Weng, Q., Gu, Y. et al. Calcaneal fractures: 3D-printing model to assist spatial weaving of percutaneous screws versus conventional open fixation—a retrospective cohort study. International Orthopaedics (SICOT) 45, 2337–2346 (2021). https://doi.org/10.1007/s00264-021-05094-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-021-05094-2

Keywords

Navigation