Skip to main content
Log in

Higher BMP receptor expression and BMP-2-induced osteogenic differentiation in tendon-derived stem cells compared with bone-marrow-derived mesenchymal stem cells

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Surgical reattachment of tendon to bone often fails due to regeneration failure of the specialised tendon–bone junction (TBJ). The use of mesenchymal stem cells for TBJ regeneration has been reported with promising results. Tendon-derived stem cells (TDSCs) with high proliferative and multi-lineage differentiation potential have been isolated. As stem cells residing in tendons, TDSCs can be considered a new cell source for TBJ repair. Bone morphogenic protein 2 (BMP-2) is a potent osteogenic factor with roles in normal bone healing and pathological ectopic bone formation in soft tissues. The use of BMP-2 to promote TBJ repair has been well reported. This study aimed to compare TDSCs to the gold standard bone-marrow-derived mesenchymal stem cells (BMSCs) with respect to osteogenic response to BMP-2 in vitro.

Method

The clonogenicity and multi-differentiation potential of TDSCs and BMSCs were identified by colony-forming-unit assay, osteogenic, adipogenic and chondrogenic differentiation assays. Their osteogenic response to BMP-2 in vitro was examined by alkaline phosphatase (ALP) cytochemical staining, ALP activity assay and Alizarin red S staining of calcium nodule formation. Messenger RNA (mRNA) and BMP receptor (types IA, IB and II) protein expression were examined by quantitative real-time reverse-transcriptase polymerase chain reaction (qRT-PCR) and Western blotting.

Results

Our results showed that both TDSCs and BMSCs exhibited stem cell properties, including clonogenicity and multi-differentiation potential. TDSCs expressed higher mRNA and protein levels of BMP receptors IA, IB and II. They also exhibited higher osteogenic differentiation with and without BMP-2 stimulation compared with BMSCs.

Conclusions

TDSCs with/without BMP-2 might be an attractive source for TBJ repair compared with BMSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF (1993) Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J Bone Joint Surg Am 75:1795–1803

    PubMed  CAS  Google Scholar 

  2. Liu SH, Panossian V, al-Shaikh R, Tomin E, Shepherd E, Finerman GA, Lane JM (1997) Morphology and matrix composition during early tendon to bone healing. Clin Orthop Relat Res 253–260.

  3. Wong MW, Qin L, Tai JK, Lee SK, Leung KS, Chan KM (2004) Engineered allogeneic chondrocyte pellet for reconstruction of fibrocartilage zone at bone-tendon junction–a preliminary histological observation. J Biomed Mater Res B Appl Biomater 70:362–367

    Article  PubMed  Google Scholar 

  4. Ivkovic A, Marijanovic I, Hudetz D, Porter RM, Pecina M, Evans CH (2011) Regenerative medicine and tissue engineering in orthopaedic surgery. Front Biosci (Elite Ed) 3:923–944

    Google Scholar 

  5. Lim JK, Hui J, Li L, Thambyah A, Goh J, Lee EH (2004) Enhancement of tendon graft osteointegration using mesenchymal stem cells in a rabbit model of anterior cruciate ligament reconstruction. Arthrosc 20:899–910

    Google Scholar 

  6. Soon MY, Hassan A, Hui JH, Goh JC, Lee EH (2007) An analysis of soft tissue allograft anterior cruciate ligament reconstruction in a rabbit model: a short-term study of the use of mesenchymal stem cells to enhance tendon osteointegration. Am J Sports Med 35:962–971

    Article  PubMed  Google Scholar 

  7. Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem cells 25:1384–1392

    Article  PubMed  CAS  Google Scholar 

  8. Hayashi O, Katsube Y, Hirose M, Ohgushi H, Ito H (2008) Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum, and adipose tissue. Calcif Tissue Int 82:238–247

    Article  PubMed  CAS  Google Scholar 

  9. Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W et al (2007) Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med 13:1219–1227

    Article  PubMed  CAS  Google Scholar 

  10. Rui YF, Lui PP, Li G, Fu SC, Lee YW, Chan KM (2010) Isolation and characterization of multipotent rat tendon-derived stem cells. Tissue Eng Part A 16:1549–1558

    Article  PubMed  CAS  Google Scholar 

  11. Rui YF, Lui PP, Ni M, Chan LS, Lee YW, Chan KM (2011) Mechanical loading increased BMP-2 expression which promoted osteogenic differentiation of tendon-derived stem cells. J Orthop Res 29:390–396

    Article  PubMed  CAS  Google Scholar 

  12. Rodeo SA, Suzuki K, Deng XH, Wozney J, Warren RF (1999) Use of recombinant human bone morphogenetic protein-2 to enhance tendon healing in a bone tunnel. Am J Sports Med 27:476–488

    PubMed  CAS  Google Scholar 

  13. Martinek V, Latterman C, Usas A, Abramowitch S, Woo SL, Fu FH, Huard J (2002) Enhancement of tendon-bone integration of anterior cruciate ligament grafts with bone morphogenetic protein-2 gene transfer: a histological and biomechanical study. J Bone Joint Surg Am 84-A:1123–1131

    PubMed  Google Scholar 

  14. Hashimoto Y, Yoshida G, Toyoda H, Takaoka K (2007) Generation of tendon-to-bone interface “enthesis” with use of recombinant BMP-2 in a rabbit model. J Orthop Res 25:1415–1424

    Article  PubMed  Google Scholar 

  15. Ma CB, Kawamura S, Deng XH, Ying L, Schneidkraut J, Hays P, Rodeo SA (2007) Bone morphogenetic proteins-signaling plays a role in tendon-to-bone healing: a study of rhBMP-2 and noggin. Am J Sports Med 35:597–604

    Article  PubMed  Google Scholar 

  16. Chen CH, Liu HW, Tsai CL, Yu CM, Lin IH, Hsiue GH (2008) Photoencapsulation of bone morphogenetic protein-2 and periosteal progenitor cells improve tendon graft healing in a bone tunnel. Am J Sports Med 36:461–473

    Article  PubMed  Google Scholar 

  17. Tang Y, Tang W, Lin Y, Long J, Wang H, Liu L, Tian W (2008) Combination of bone tissue engineering and BMP-2 gene transfection promotes bone healing in osteoporotic rats. Cell Biol Int 32:1150–1157

    Article  PubMed  CAS  Google Scholar 

  18. Pecina M, Vukicevic S (2007) Biological aspects of bone, cartilage and tendon regeneration. Int Orthop 31:719–720

    Article  PubMed  Google Scholar 

  19. Osyczka AM, Damek-Poprawa M, Wojtowicz A, Akintoye SO (2009) Age and skeletal sites affect BMP-2 responsiveness of human bone marrow stromal cells. Connect Tissue Res 50:270–277

    Article  PubMed  CAS  Google Scholar 

  20. Sato R, Uchida K, Kobayashi S, Yayama T, Kokubo Y, Nakajima H et al (2007) Ossification of the posterior longitudinal ligament of the cervical spine: histopathological findings around the calcification and ossification front. J Neurosurg Spine 7:174–183

    Article  PubMed  Google Scholar 

  21. Neuwirth J, Fuhrmann RA, Veit A, Aurich M, Stonans I, Trommer T, Hortschansky P, Chubinskaya S, Mollenhauer JA (2006) Expression of bioactive bone morphogenetic proteins in the subacromial bursa of patients with chronic degeneration of the rotator cuff. Arthritis Res Ther 8:R92

    Article  PubMed  Google Scholar 

  22. Kaps C, Hoffmann A, Zilberman Y, Pelled G, Haupl T, Sittinger M et al (2004) Distinct roles of BMP receptors type IA and IB in osteo-/chondrogenic differentiation in mesenchymal progenitors (C3H10T1/2). Biofactors 20:71–84

    Article  PubMed  CAS  Google Scholar 

  23. Kawabata M, Miyazono K (2000) Bone morphogenetic proteins. In: Drnesto C (ed) Skeletal growth factors. Lippincott Williams & Wilkins, Philadelphia, pp 269–290

    Google Scholar 

  24. Tan Q, Lui PP, Rui YF (2011) Effect of in-vitro passaging on the stem cell-related properties of tendon-derived stem cells (TDSCs) - implication in tissue engineering. Stem Cells Dev. doi:10.1089/scd.2011.0160

  25. Lui PP, Chan LS, Lee YW, Fu SC, Chan KM (2010) Sustained expression of proteoglycans and collagen type III/type I ratio in a calcified tendinopathy model. Rheumatol (Oxford) 49:231–239

    Article  CAS  Google Scholar 

  26. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312

    Article  PubMed  CAS  Google Scholar 

  27. Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R et al (2008) Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 3:e2213

    Article  PubMed  Google Scholar 

  28. Seib FP, Franke M, Jing D, Werner C, Bornhauser M (2009) Endogenous bone morphogenetic proteins in human bone marrow-derived multipotent mesenchymal stromal cells. Eur J Cell Biol 88:257–271

    Article  PubMed  CAS  Google Scholar 

  29. Tan Q, Lui PP, Rui Y, Wong YM (2011) Comparison of potentials of stem cells isolated from tendon and bone marrow for musculoskeletal tissue engineering. Tissue Eng Part A. doi:10.1089/ten.TEA.2011.0362

  30. Blitz E, Viukov S, Sharir A, Shwartz Y, Galloway JL, Pryce BA et al (2009) Bone ridge patterning during musculoskeletal assembly is mediated through SCX regulation of Bmp4 at the tendon-skeleton junction. Dev Cell 17:861–873

    Article  PubMed  Google Scholar 

  31. Mihelic R, Pecina M, Jelic M, Zoricic S, Kusec V, Simic P et al (2004) Bone morphogenetic protein-7 (osteogenic protein-1) promotes tendon graft integration in anterior cruciate ligament reconstruction in sheep. Am J Sports Med 32:1619–1625

    Article  PubMed  Google Scholar 

  32. Yoshizawa T, Takizawa F, Iizawa F, Ishibashi O, Kawashima H, Matsuda A et al (2004) Homeobox protein MSX2 acts as a molecular defense mechanism for preventing ossification in ligament fibroblasts. Mol Cell Biol 24:3460–3472

    Article  PubMed  CAS  Google Scholar 

  33. Hoffmann A, Pelled G, Turgeman G, Eberle P, Zilberman Y, Shinar H et al (2006) Neotendon formation induced by manipulation of the Smad8 signalling pathway in mesenchymal stem cells. J Clin Invest 116:940–952

    Article  PubMed  CAS  Google Scholar 

  34. Nojima J, Kanomata K, Takada Y, Fukuda T, Kokabu S, Ohte S et al (2010) Dual roles of smad proteins in the conversion from myoblasts to osteoblastic cells by bone morphogenetic proteins. J Biol Chem 2285:15577–15586

    Article  Google Scholar 

  35. Zhang J, Wang JH (2010) Mechanobiological response of tendon stem cells: implications of tendon homeostasis and pathogenesis of tendinopathy. J Orthop Res 28:639–643

    Article  PubMed  Google Scholar 

  36. Rui YF, Lui PP, Chan LS, Chan KM, Fu SC, Li G (2011) Does erroneous differentiation of tendon-derived stem cells contribute to the pathogenesis of calcifying tendinopathy? Chin Med J (Engl) 124:606–610

    Google Scholar 

  37. Lui PP, Chan LS, Cheuk YC, Lee YW, Chan KM (2009) Expression of bone morphogenetic protein-2 in the chondrogenic and ossifying sites of calcific tendinopathy and traumatic tendon injury rat models. J Orthop Surg Res 4:27

    Article  PubMed  Google Scholar 

  38. Lui PP, Wong YM, Rui YF, Lee YW, Chan LS, Chan KM (2011) Expression of chondro-osteogenic BMPs in ossified failed tendon healing model of tendinopathy. J Orthop Res 29:816–821

    Article  CAS  Google Scholar 

  39. Rui YF, Lui PP, Rolf CG, Wong YM, Lee YW, Chan KM (2011) Expression of chondro-osteogenic BMPs in clinical samples of patellar tendinopathy. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-011-1685-8

  40. Arnoczky SP, Lavagnino M, Egerbacher MT (2007) The response of tendon cells to changing loads: implications in the etiopathogenesis of tendinopathy. In: Woo SLY (ed) Tendinopathy in athletes. Blackwell Publishing, USA, pp 46–59

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by equipment/resources donated by the Hong Kong Jockey Club Charities Trust and the CUHK Direct Grant (Ref no. 2010.1.063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline Po Yee Lui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rui, Y.F., Lui, P.P.Y., Lee, Y.W. et al. Higher BMP receptor expression and BMP-2-induced osteogenic differentiation in tendon-derived stem cells compared with bone-marrow-derived mesenchymal stem cells. International Orthopaedics (SICOT) 36, 1099–1107 (2012). https://doi.org/10.1007/s00264-011-1417-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-011-1417-1

Keywords

Navigation