Skip to main content

Advertisement

Log in

Arthroplasty of the lunate using bone marrow mesenchymal stromal cells

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Mesenchymal stromal cells have the potential to differentiate into a variety of mesenchymal tissues such as bone, cartilage and ligaments. The potential for the regeneration of bone with cartilage coverage has still not been achieved. We evaluated the ability of bone marrow mesenchymal stromal cells to regenerate osteochondral defects in the cavity of the lunate in an animal model. Autologous mesenchymal stromal cells were harvested from the iliac crest of New Zealand white rabbits and expanded in vitro. Total lunate excision was performed in 24 animals and the isolated cells were loaded onto scaffolds. Cell-free scaffolds were implanted in the lunate space of the right wrists of all animals, and the left lunate spaces were filled with predifferentiated, cell-loaded scaffolds. Radiographic and histological analyses were performed after two, six and 12 weeks. In addition, the animals were injected with a fluorescent agent every five days, starting at day 30. After two and six weeks there was no radiographic evidence of ossification, whereas after 12 weeks all animals showed radiographic evidence of ossification. Histological sections showed increasing evidence of cartilage-like cell formation at the edges and new bone tissue in the centre of the newly formed tissue in all groups. The histological examinations showed that bone tissue was located around the newly incorporated vascularisation. This study demonstrated that newly formed vascularisation is necessary for the regeneration of bone tissue with cell-loaded scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  2. Noth U, Osyczka AM, Tuli R, Hickok NJ, Danielson KG, Tuan RS (2002) Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J Orthop Res 20:1060–1069. doi:10.1016/S0736-0266(02)00018-9

    Article  PubMed  Google Scholar 

  3. Minami A, Kimura T, Suzuki K (1994) Long-term results of Kienbock’s disease treated by triscaphe arthrodesis and excisional arthroplasty with a coiled palmaris longus tendon. J Hand Surg [Am] 19:219–228

    Article  CAS  Google Scholar 

  4. De Bari C, Dell’Accio F, Luyten FP (2001) Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum 44:85–95

    Article  PubMed  Google Scholar 

  5. Angele P, Kujat R, Nerlich M, Yoo J, Goldberg V, Johnstone B (1999) Engineering of osteochondral tissue with bone marrow mesenchymal progenitor cells in a derivatized hyaluronan-gelatin composite sponge. Tissue Eng 5:545–554

    Article  PubMed  CAS  Google Scholar 

  6. Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI, Goldberg VM (1994) Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am 76:579–592

    PubMed  CAS  Google Scholar 

  7. Barry F, Boynton RE, Liu B, Murphy JM (2001) Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res 268:189–200

    Article  PubMed  CAS  Google Scholar 

  8. Bruder SP, Kraus KH, Goldberg VM, Kadiyala S (1998) The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am 80:985–996

    PubMed  CAS  Google Scholar 

  9. Im GI, Kim DY, Shin JH, Hyun CW, Cho WH (2001) Repair of cartilage defect in the rabbit with cultured mesenchymal stem cells from bone marrow. J Bone Joint Surg Br 83:289–294

    Article  PubMed  CAS  Google Scholar 

  10. Giunta R, Rock C, Lower N, Wilhelm K, Lanz U, Muller-Gerbl M (1998) Stress on the wrist joint in semilunar bone necrosis—a morphologic study in vivo. Handchir Mikrochir Plast Chir 30:158–164

    PubMed  CAS  Google Scholar 

  11. Schiltenwolf M, Martini AK, Mau HC, Eversheim S, Brocai DR, Jensen CH (1996) Further investigations of the intraosseous pressure characteristics in necrotic lunates (Kienbock’s disease). J Hand Surg [Am] 21:754–758

    Article  CAS  Google Scholar 

  12. Kienböck R (1910) Über traumatische Malazie des Mondbeins und ihre Folgezustände: Endartungszustände und Kompressions Frakturen. Fortschr Rontgenstr 16:77–103 (in German)

    Google Scholar 

  13. Takase K, Imakiire A (2001) Lunate excision, capitate osteotomy, and intercarpal arthrodesis for advanced Kienbock disease. Long-term follow-up. J Bone Joint Surg Am 83-A:177–183

    PubMed  CAS  Google Scholar 

  14. Jebson PJ, Hayes EP, Engber WD (2003) Proximal row carpectomy: a minimum 10-year follow-up study. J Hand Surg [Am] 28:561–569

    Article  Google Scholar 

  15. Wyrick JD (2003) Proximal row carpectomy and intercarpal arthrodesis for the management of wrist arthritis. J Am Acad Orthop Surg 11:277–281

    PubMed  Google Scholar 

  16. Begley BW, Engber WD (1994) Proximal row carpectomy in advanced Kienbock’s disease. J Hand Surg [Am] 19:1016–1018

    Article  CAS  Google Scholar 

  17. Shin AY, Bishop AT (2002) Pedicled vascularized bone grafts for disorders of the carpus: scaphoid nonunion and Kienbock’s disease. J Am Acad Orthop Surg 10:210–216

    PubMed  Google Scholar 

  18. Campoccia D, Doherty P, Radice M, Brun P, Abatangelo G, Williams DF (1998) Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials 19:2101–2127

    Article  PubMed  CAS  Google Scholar 

  19. Grigolo B, Lisignoli G, Desando G, Cavallo C, Marconi E, Tschon M, Giavaresi G, Fini M, Giardino R, Facchini A (2009) Osteoarthritis treated with mesenchymal stem cells on hyaluronan-based scaffold in rabbit. Tissue Eng Part C Methods 15(4):647–658

    Google Scholar 

  20. Alini M, Li W, Markovic P, Aebi M, Spiro RC, Roughley PJ (2003) The potential and limitations of a cell-seeded collagen/hyaluronan scaffold to engineer an intervertebral disc-like matrix. Spine 28:446–454

    Article  PubMed  Google Scholar 

  21. Cristino S, Grassi F, Toneguzzi S, Piacentini A, Grigolo B, Santi S, Riccio M, Tognana E, Facchini A, Lisignoli G (2005) Analysis of mesenchymal stem cells grown on a three-dimensional HYAFF 11-based prototype ligament scaffold. J Biomed Mater Res A 73:275–283

    PubMed  CAS  Google Scholar 

  22. Solchaga LA, Gao J, Dennis JE, Awadallah A, Lundberg M, Caplan AI, Goldberg VM (2002) Treatment of osteochondral defects with autologous bone marrow in a hyaluronan-based delivery vehicle. Tissue Eng 8:333–347

    Article  PubMed  CAS  Google Scholar 

  23. Huang JI, Durbhakula MM, Angele P, Johnstone B, Yoo JU (2006) Lunate arthroplasty with autologous mesenchymal stem cells in a rabbit model. J Bone Joint Surg Am 88:744–752

    Article  PubMed  Google Scholar 

  24. Case ND, Duty AO, Ratcliffe A, Muller R, Guldberg RE (2003) Bone formation on tissue-engineered cartilage constructs in vivo: effects of chondrocyte viability and mechanical loading. Tissue Eng 9:587–596

    Article  PubMed  CAS  Google Scholar 

  25. Kim WS, Vacanti CA, Upton J, Vacanti JP (1994) Bone defect repair with tissue-engineered cartilage. Plast Reconstr Surg 94:580–584

    Article  PubMed  CAS  Google Scholar 

  26. Djouad F, Bouffi C, Ghannam S, Noel D, Jorgensen C (2009) Mesenchymal stem cells: innovative therapeutic tools for rheumatic diseases. Nat Rev Rheumatol 5:392–399. doi:nrrheum.2009.104[pii]10.1038/nrrheum.2009.104

    Article  PubMed  CAS  Google Scholar 

  27. Angele P, Yoo JU, Smith C, Mansour J, Jepsen KJ, Nerlich M, Johnstone B (2003) Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J Orthop Res 21:451–457

    Article  PubMed  CAS  Google Scholar 

  28. Waldman SD, Spiteri CG, Grynpas MD, Pilliar RM, Hong J, Kandel RA (2003) Effect of biomechanical conditioning on cartilaginous tissue formation in vitro. J Bone Joint Surg Am 85-A(Suppl 2):101–105

    PubMed  Google Scholar 

  29. Hente R, Fuchtmeier B, Schlegel U, Ernstberger A, Perren SM (2004) The influence of cyclic compression and distraction on the healing of experimental tibial fractures. J Orthop Res 22:709–715

    Article  PubMed  CAS  Google Scholar 

  30. Huang CY, Hagar KL, Frost LE, Sun Y, Cheung HS (2004) Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells 22:313–323

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Berner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berner, A., Pfaller, C., Dienstknecht, T. et al. Arthroplasty of the lunate using bone marrow mesenchymal stromal cells. International Orthopaedics (SICOT) 35, 379–387 (2011). https://doi.org/10.1007/s00264-010-0997-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-010-0997-5

Keywords

Navigation