Skip to main content

Advertisement

Log in

Comprehensive analysis of immune subtypes reveals the prognostic value of cytotoxicity and FAP+ fibroblasts in stomach adenocarcinoma

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

The heterogeneity limits the effective application of immune checkpoint inhibitors for patients with stomach adenocarcinoma (STAD). Precise immunotyping can help select people who may benefit from immunotherapy and guide postoperative management by describing the characteristics of tumor microenvironment.

Methods

Gene expression profiles and clinical information of patients were collected from ACRG and TCGA-STAD datasets. The immune subtypes (ISs) were identified by consensus clustering analysis. The tumor immune microenvironments (TIME) of each IS were characterized using a series of immunogenomics methods and further confirmed by multiplex immunohistochemistry (mIHC) staining in clinical samples. Two online datasets and one in-house dataset were utilized to construct and validate a prognostic immune-related gene (IRG) signature.

Results

STAD patients were stratified into five reproducible ISs. IS1 (immune deserve subtype) had low immune infiltration and the highest degree of HER2 gene mutation. With abundant CD8+ T cells infiltration and activated cytotoxicity reaction, patients in the IS2 (immune-activated subtype) had the best overall survival (OS). IS3 and IS4 subtypes were both in the reactive stroma state and indicated the worst prognosis. However, IS3 (immune-inhibited subtype) was characterized by enrichment of FAP+ fibroblasts and upregulated TGF-β signaling pathway, while IS4 (activated stroma subtype) was characterized by enrichment of ACTA2+ fibroblasts. In addition, mIHC staining confirmed that TGF-β upregulated FAP+ fibroblasts were independent risk factor of OS. IS5 (chronic inflammation subtype) displayed moderate immune cells infiltration and had a relatively good survival. Lastly, we developed a nine-IRG signature model with a robust performance on overall survival prognostication.

Conclusions

The immunotyping is indicative for characterize the TIME heterogeneity and the prediction of tumor prognosis for STADs, which may provide valuable stratification for the design of future immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

All online data described in this article are available from the corresponding web servers and are freely available to any scientist wishing to use them for noncommercial purposes, without breaching participant confidentiality. Further information is available from the corresponding author on reasonable request. For the in-house data, please contact author for data requests.

Abbreviations

ACRG:

Asian Cancer Research Group

ARID1A:

AT-rich interaction domain 1A

AUC:

Area under the curve

CIN:

Chromosomal instability

CLDN18.2:

Claudin 18.2

CNV:

Copy number variation

CSMD3:

Sushi multiple domains 3

CT:

Cycle threshold

EBV:

Epstein–Barr virus

ERBB2:

Erb-B2 receptor tyrosine kinase 2

EZH2:

Enhancer of zeste homolog 2

FUSCC:

Fudan University Shanghai Cancer Center

GEO:

Gene expression omnibus

GO:

Gene ontology

GS:

Genomically stable

GSEA:

Gene set enrichment analysis

IGM:

Immune gene modules

IGP:

In-group proportion

IRG:

Immune‐related gene

ISs:

Immune subtypes

LASSO:

Least absolute shrinkage and selection operator

mIHC:

Multiplex immunohistochemistry

MMR:

Recruit mismatch repair

MSI:

Microsatellite instability

MSS:

Microsatellite stable

OS:

Overall survival

PAM:

Partition around medoids

PD-L1:

Programmed death-ligand 1

ROC:

Receiver operating characteristic

STAD:

Stomach adenocarcinoma

TCGA:

The cancer genome atlas

TIME:

Tumor immune microenvironment

TMA:

Tissue microarray

TME:

Tumor microenvironment

TSR:

Tumor–stroma ratio

References

  1. Sitarz R, Skierucha M, Mielko J, Offerhaus GJA, Maciejewski R, Polkowski WP (2018) Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res 10:239–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rawla P, Barsouk A (2019) Epidemiology of gastric cancer: global trends, risk factors and prevention. Prz Gastroenterol 14(1):26–38

    CAS  PubMed  Google Scholar 

  3. Choi YYCJNS (2013) Advanced gastric cancer: Is chemotherapy needed after surgery? Expert Rev Gastroenterol Hepatol 7(8):673–675

    Article  CAS  PubMed  Google Scholar 

  4. Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F (2020) Gastric cancer. Lancet 396(10251):635–648

    Article  CAS  PubMed  Google Scholar 

  5. Darvin P, Toor SM, Sasidharan Nair V, Elkord E (2018) Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med 50(12):1–11

    Article  PubMed  Google Scholar 

  6. Kim ST, Cristescu R, Bass AJ, Kim KM, Odegaard JI, Kim K et al (2018) Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat Med 24(9):1449–1458

    Article  CAS  PubMed  Google Scholar 

  7. Wang F, Wei XL, Wang FH, Xu N, Shen L, Dai GH et al (2019) Safety, efficacy and tumor mutational burden as a biomarker of overall survival benefit in chemo-refractory gastric cancer treated with toripalimab, a PD-1 antibody in phase Ib/II clinical trial NCT02915432. Ann Oncol 30(9):1479–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rodriguez H, Zenklusen JC, Staudt LM, Doroshow JH, Lowy DR (2021) The next horizon in precision oncology: Proteogenomics to inform cancer diagnosis and treatment. Cell 184(7):1661–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D et al (2017) Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 18(1):248–262

    Article  CAS  PubMed  Google Scholar 

  10. Finotello F, Mayer C, Plattner C, Laschober G, Rieder D, Hackl H et al (2019) Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med 11(1):34

    Article  PubMed  PubMed Central  Google Scholar 

  11. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y et al (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12(5):453–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W et al (2013) Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 4:2612

    Article  PubMed  Google Scholar 

  13. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF et al (2009) Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462(7269):108–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hänzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform 14:7

    Article  Google Scholar 

  15. Ren X, Zhang L, Zhang Y, Li Z, Siemers N, Zhang Z (2021) Insights gained from single-cell analysis of immune cells in the tumor microenvironment. Annu Rev Immunol 39:583–609

    Article  CAS  PubMed  Google Scholar 

  16. Xia L, Oyang L, Lin J, Tan S, Han Y, Wu N et al (2021) The cancer metabolic reprogramming and immune response. Mol Cancer 20(1):28

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chang JJ, Wang XY, Zhang W, Tan C, Sheng WQ, Xu MD (2022) Comprehensive molecular characterization and identification of prognostic signature in stomach adenocarcinoma on the basis of energy-metabolism-related genes. World J Gastrointest Oncol 14(2):478–497

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bhattacharya S, Dunn P, Thomas CG, Smith B, Schaefer H, Chen J et al (2018) ImmPort, toward repurposing of open access immunological assay data for translational and clinical research. Sci Data 5:180015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wilkerson MD, Hayes DN (2010) ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 26(12):1572–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kapp AV, Tibshirani R (2007) Are clusters found in one dataset present in another dataset? Biostatistics 8(1):9–31

    Article  PubMed  Google Scholar 

  21. Zeng D, Ye Z, Shen R, Yu G, Wu J, Xiong Y et al (2021) IOBR: multi-omics immuno-oncology biological research to decode tumor microenvironment and signatures. Front Immunol 12:687975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu MD, Wang Y, Weng W, Wei P, Qi P, Zhang Q et al (2017) A positive feedback loop of lncRNA-PVT1 and FOXM1 facilitates gastric cancer growth and invasion. Clin Cancer Res 23(8):2071–2080

    Article  CAS  PubMed  Google Scholar 

  23. Gu Z (2022) Complex heatmap visualization. iMeta 1(3):e43

    Article  Google Scholar 

  24. Chabanon RM, Rouanne M, Lord CJ, Soria JC, Pasero P, Postel-Vinay S (2021) Targeting the DNA damage response in immuno-oncology: developments and opportunities. Nat Rev Cancer 21(11):701–717

    Article  CAS  PubMed  Google Scholar 

  25. Kemi N, Eskuri M, Herva A, Leppanen J, Huhta H, Helminen O et al (2018) Tumour-stroma ratio and prognosis in gastric adenocarcinoma. Br J Cancer 119(4):435–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu Y, Sethi NS, Hinoue T, Schneider BG, Cherniack AD, Sanchez-Vega F et al (2018) Comparative molecular analysis of gastrointestinal adenocarcinomas. Cancer Cell 33(4):721–35.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cristescu R, Lee J, Nebozhyn M, Kim KM, Ting JC, Wong SS et al (2015) Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med 21(5):449–456

    Article  CAS  PubMed  Google Scholar 

  28. Zeng D, Li M, Zhou R, Zhang J, Sun H, Shi M et al (2019) Tumor microenvironment characterization in gastric cancer identifies prognostic and immunotherapeutically relevant gene signatures. Cancer Immunol Res 7(5):737–750

    Article  CAS  PubMed  Google Scholar 

  29. Smyth EC, Gambardella V, Cervantes A, Fleitas T (2021) Checkpoint inhibitors for gastroesophageal cancers: dissecting heterogeneity to better understand their role in first-line and adjuvant therapy. Ann Oncol 32(5):590–599

    Article  CAS  PubMed  Google Scholar 

  30. Janjigian YY, Ott PA, Calvo E, Kim JW, Ascierto PA, Sharma P et al. (2017) Nivolumab ± ipilimumab in pts with advanced (adv)/metastatic chemotherapy-refractory (CTx-R) gastric (G), esophageal (E), or gastroesophageal junction (GEJ) cancer: CheckMate 032 study. 35(15_suppl):4014

  31. de Ochoa Olza M, Navarro Rodrigo B, Zimmermann S, Coukos G (2020) Turning up the heat on non-immunoreactive tumours: opportunities for clinical development. Lancet Oncol 21(9):e419–e430

    Article  Google Scholar 

  32. Pang MF, Lin KW, Peh SC (2009) The signaling pathways of Epstein–Barr virus-encoded latent membrane protein 2A (LMP2A) in latency and cancer. Cell Mol Biol Lett 14(2):222–247

    Article  CAS  PubMed  Google Scholar 

  33. Sundar R, Qamra A, Tan ALK, Zhang S, Ng CCY, Teh BT et al (2018) Transcriptional analysis of immune genes in Epstein-Barr virus-associated gastric cancer and association with clinical outcomes. Gastric Cancer 21(6):1064–1070

    Article  CAS  PubMed  Google Scholar 

  34. Lee SM, Park HY, Suh YS, Yoon EH, Kim J, Jang WH et al (2017) Inhibition of acute lethal pulmonary inflammation by the IDO-AhR pathway. Proc Natl Acad Sci U S A 114(29):E5881–E5890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA et al (2017) Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep 19(6):1189–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer-immune set point. Nature 541(7637):321–330

    Article  CAS  PubMed  Google Scholar 

  37. Herrera FG, Ronet C, de Ochoa Olza M, Barras D, Crespo I, Andreatta M et al (2022) Low-dose radiotherapy reverses tumor immune desertification and resistance to immunotherapy. Cancer Discov 12(1):108–133

    Article  CAS  PubMed  Google Scholar 

  38. Bussard KM, Mutkus L, Stumpf K, Gomez-Manzano C, Marini FC (2016) Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res 18(1):84

    Article  PubMed  PubMed Central  Google Scholar 

  39. Turley SJ, Cremasco V, Astarita JL (2015) Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol 15(11):669–682

    Article  CAS  PubMed  Google Scholar 

  40. Wang H, Shen L, Li Y, Lv J (2020) Integrated characterisation of cancer genes identifies key molecular biomarkers in stomach adenocarcinoma. J Clin Pathol 73(9):579–586

    Article  CAS  PubMed  Google Scholar 

  41. Shen J, Ju Z, Zhao W, Wang L, Peng Y, Ge Z et al (2018) ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat Med 24(5):556–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gan L, Xu M, Hua R, Tan C, Zhang J, Gong Y et al (2018) The polycomb group protein EZH2 induces epithelial-mesenchymal transition and pluripotent phenotype of gastric cancer cells by binding to PTEN promoter. J Hematol Oncol 11(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wei S, Fan Q, Yang L, Zhang X, Ma Y, Zong Z et al (2017) Promotion of glycolysis by HOTAIR through GLUT1 upregulation via mTOR signaling. Oncol Rep 38(3):1902–1908

    Article  CAS  PubMed  Google Scholar 

  44. Chowdhury B, Porter EG, Stewart JC, Ferreira CR, Schipma MJ, Dykhuizen EC (2016) PBRM1 regulates the expression of genes involved in metabolism and cell adhesion in renal clear cell carcinoma. PLoS ONE 11(4):e0153718

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sheng WQ, Huang D, Ying JM, Lu N, Wu HM, Liu YH et al (2013) HER2 status in gastric cancers: a retrospective analysis from four Chinese representative clinical centers and assessment of its prognostic significance. Ann Oncol 24(9):2360–2364

    Article  CAS  PubMed  Google Scholar 

  46. Sahin U, Schuler M, Richly H, Bauer S, Krilova A, Dechow T et al (2018) A phase I dose-escalation study of IMAB362 (Zolbetuximab) in patients with advanced gastric and gastro-oesophageal junction cancer. Eur J Cancer 100:17–26

    Article  CAS  PubMed  Google Scholar 

  47. Türeci O, Sahin U, Schulze-Bergkamen H, Zvirbule Z, Lordick F, Koeberle D et al (2019) A multicentre, phase IIa study of zolbetuximab as a single agent in patients with recurrent or refractory advanced adenocarcinoma of the stomach or lower oesophagus: the MONO study. Ann Oncol 30(9):1487–1495

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lordick F, Al-Batran SE, Ganguli A, Morlock R, Sahin U, Türeci Ö (2021) Patient-reported outcomes from the phase II FAST trial of zolbetuximab plus EOX compared to EOX alone as first-line treatment of patients with metastatic CLDN18.2+ gastroesophageal adenocarcinoma. Gastric Cancer 24(3):721–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sahin U, Türeci Ö, Manikhas G, Lordick F, Rusyn A, Vynnychenko I et al (2021) FAST: a randomised phase II study of zolbetuximab (IMAB362) plus EOX versus EOX alone for first-line treatment of advanced CLDN18.2-positive gastric and gastro-oesophageal adenocarcinoma. Ann Oncol 32(5):609–619

    Article  CAS  PubMed  Google Scholar 

  50. Gatti G, Betts C, Rocha D, Nicola M, Grupe V, Ditada C et al (2021) High IRF8 expression correlates with CD8 T cell infiltration and is a predictive biomarker of therapy response in ER-negative breast cancer. Breast Cancer Res 23(1):40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. La Fleur L, Botling J, He F, Pelicano C, Zhou C, He C et al (2021) Targeting MARCO and IL37R on immunosuppressive macrophages in lung cancer blocks regulatory T cells and supports cytotoxic lymphocyte function. Cancer Res 81(4):956–967

    Article  CAS  PubMed  Google Scholar 

  52. Fu K, Hui B, Wang Q, Lu C, Shi W, Zhang Z et al (2020) Single-cell RNA sequencing of immune cells in gastric cancer patients. Aging 12(3):2747–2763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shen Y, Xu L, Ning Z, Liu L, Lin J, Chen H et al (2019) ARHGAP4 regulates the cell migration and invasion of pancreatic cancer by the HDAC2/β-catenin signaling pathway. Carcinogenesis 40(11):1405–1414

    Article  CAS  PubMed  Google Scholar 

  54. Stevenson L, Allen WL, Proutski I, Stewart G, Johnston L, McCloskey K et al (2011) Calbindin 2 (CALB2) regulates 5-fluorouracil sensitivity in colorectal cancer by modulating the intrinsic apoptotic pathway. PLoS ONE 6(5):e20276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen Y, Sun Z, Chen W, Liu C, Chai R, Ding J et al (2021) The immune subtypes and landscape of gastric cancer and to predict based on the whole-slide images using deep learning. Front Immunol 12:685992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li L, Wang X (2021) Identification of gastric cancer subtypes based on pathway clustering. npj Precis Oncol 5(1):1–17

    Google Scholar 

  57. You W, Ouyang J, Cai Z, Chen Y, Wu X et al (2022) Comprehensive analyses of immune subtypes of stomach adenocarcinoma for mRNA vaccination. Front Immunol 13:827506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank TCGA (http://cancergenome.nih.gov) and the GEO database (https://www.ncbi.nlm.nih.gov/geo/) for data collection.

Funding

This work was supported by National Natural Science Foundation of China (82273370, 82202899, 82172702, 81972249, 81902430), Shanghai Clinical Science and Technology Innovation Project of Municipal Hospital (SHDC12020102), Clinical Research Project of Shanghai Shenkang Hospital Development Center (SHDC2020CR4068), Natural Science Foundation of Shanghai (22ZR1413000, 21ZR1414900), Artificial Intelligence Medical Hospital Cooperation Project of Xuhui District (2021-017), Shanghai Science and technology development fund (19MC1911000), Shanghai Municipal Key Clinical Specialty (shslczdzk01301), Clinical Research Project of Shanghai Municipal Health Committee (20194Y0348), Shanghai “Rising Stars of Medical Talents” Youth Development Program Youth Medical Talents—Specialist Program (SHWSRS(2020)_087), and the Interdisciplinary Program of Shanghai Jiao Tong University (YG2019QNA40).

Author information

Authors and Affiliations

Authors

Contributions

XiW, MX, and CT conceived the study, performed the literature search and bioinformatics analysis, and prepared the figures. XiW, HS, XuW, We W, MZ, SN, ZD, and WaW helped with data collection, analysis, and interpretation. MX, Wa W, and WS wrote and revised the manuscript. XiW, HS, and CT contributed equally to this work. WS, MX and Wa W share the corresponding authorship of this study. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wenfeng Wang, Midie Xu or Weiqi Sheng.

Ethics declarations

Conflict of interest

The authors declared no potential conflict of interest in terms of the research, authorship, and/or publication of this article.

Consent for publication

Consent to publish has been obtained from the participants.

Ethics approval and consent to participate

Ethics approval and consent to participate for the study were obtained from the Clinical Research Ethics Committee of Fudan University Shanghai Cancer Center (FUSCC), Ethical code: 050432-4-1212B.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

262_2023_3368_MOESM1_ESM.tif

Supplementary Figure 1. Consensus clustering results and validation between datasets. (A, B) Sample cumulative distribution function (CDF) curve (A) and delta area curve (B) of consensus clustering in the ACRG dataset, indicating the relative change in area under the CDF curve for each category number k compared with k – 1. The horizontal axis represents the category number k and the vertical axis represents the relative change in area under CDF curve. (C) Consensus matrix with consensus k=5 in the ACRG dataset. (D, E) CDF curve (D) and delta area curve (E) of the TCGA-STAD dataset. (F) Correlation of average IGMs scores of the ACRG and the TCGA-STAD dataset. (G) IGP evaluates the similarity and reproducibility of the proposed IGMs between discovery and validation cohorts. (TIF 2366 KB)

262_2023_3368_MOESM2_ESM.tif

Supplementary Figure 2. Abundance of immune cells (A) and ssGSEA heatmap (B) within ISs of the TCGA-STAD dataset. (TIF 11550 KB)

Supplementary file3 (XLSX 49 KB)

Supplementary file4 (XLSX 10 KB)

Supplementary file5 (XLSX 21 KB)

Supplementary file6 (XLSX 10 KB)

Supplementary file7 (XLSX 77 KB)

Supplementary file8 (XLSX 158 KB)

Supplementary file9 (XLSX 1236 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Hui, S., Tan, C. et al. Comprehensive analysis of immune subtypes reveals the prognostic value of cytotoxicity and FAP+ fibroblasts in stomach adenocarcinoma. Cancer Immunol Immunother 72, 1763–1778 (2023). https://doi.org/10.1007/s00262-023-03368-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-023-03368-9

Keywords

Navigation