Skip to main content

Advertisement

Log in

Interleukin-32γ promotes macrophage-mediated chemoresistance by inducing CSF1-dependent M2 macrophage polarization in multiple myeloma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Macrophages (MΦs) are an abundant component in the multiple myeloma (MM) environment and contribute to MM drug resistance. We previously showed that interleukin-32 (IL-32) is highly expressed in MM patients and induces the immunosuppressive function of MΦs. The present study was designed to explore the role of IL-32 in MΦ-mediated MM drug resistance and the underlying mechanism. Our analysis revealed that IL-32 expression was upregulated in relapsed MM patients and associated with CD206+ M2 MΦ infiltration. Subsequently, we found that the most active isoform, IL-32γ, promoted MΦs to protect MM cells from drug-induced apoptosis both in vitro and in vivo. Furthermore, by evaluating many parameters, including surface markers, cytokines, metabolic enzymes and characteristic molecules, IL-32γ was verified to induce the polarization of M2 MΦs, a function that was partly dependent on increasing the expression of colony-stimulating factor 1 (CSF1). Taken together, the results of our study indicate that IL-32γ promotes MΦ-mediated MM drug resistance and modifies MΦs toward the M2 phenotype, providing a crucial theoretical basis for targeted MΦ immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kumar SK, Rajkumar V, Kyle RA, van Duin M, Sonneveld P, Mateos MV, Gay F, Anderson KC (2017) Multiple myeloma. Nat Rev Dis Primers 3:17046

    Article  Google Scholar 

  2. Yang Y, Li Y, Gu H, Dong M, Cai Z (2020) Emerging agents and regimens for multiple myeloma. J Hematol Oncol 13:150

    Article  Google Scholar 

  3. Kawano Y, Roccaro AM, Ghobrial IM, Azzi J (2017) Multiple myeloma and the immune microenvironment. Curr Cancer Drug Targets 17:806–818

    Article  CAS  Google Scholar 

  4. Zheng Y, Cai Z, Wang S, Zhang X, Qian J, Hong S, Li H, Wang M, Yang J, Yi Q (2009) Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug-induced apoptosis. Blood 114:3625–3628

    Article  CAS  Google Scholar 

  5. Berardi S, Ria R, Reale A, De Luisi A, Catacchio I, Moschetta M, Vacca A (2013) Multiple myeloma macrophages: pivotal players in the tumor microenvironment. J Oncol 2013:183602

    Article  Google Scholar 

  6. Chen J, He D, Chen Q, Guo X, Yang L, Lin X, Li Y, Wu W, Yang Y, He J, Zhang E, Yi Q, Cai Z (2017) BAFF is involved in macrophage-induced bortezomib resistance in myeloma. Cell Death Dis 8:e3161

    Article  CAS  Google Scholar 

  7. Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment, F1000prime reports, 6:13.

  8. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41:14–20

    Article  CAS  Google Scholar 

  9. Cassetta L. Pollard JW (2018) Targeting macrophages: therapeutic approaches in cancer, Nature reviews. Drug Discovery.

  10. Panchabhai S, Kelemen K, Ahmann G, Sebastian S, Mantei J, Fonseca R (2016) Tumor-associated macrophages and extracellular matrix metalloproteinase inducer in prognosis of multiple myeloma. Leukemia 30:951–954

    Article  CAS  Google Scholar 

  11. Dahl CA, Schall RP, He HL, Cairns JS (1992) Identification of a novel gene expressed in activated natural killer cells and T cells. J Immunol 148:597–603

    Article  CAS  Google Scholar 

  12. Hong JT, Son DJ, Lee CK, Yoon DY, Lee DH, Park MH (2017) Interleukin 3. Inflammation Cancer Pharmacol Therapeutics (2017).

  13. Yan H, He D, Huang X, Zhang E, Chen Q, Xu R, Liu X, Zi F, Cai Z (2018) Role of interleukin-32 in cancer biology. Oncol Lett 16:41–47

    Google Scholar 

  14. Kang YH, Park MY, Yoon DY, Han SR, Lee CI, Ji NY, Myung PK, Lee HG, Kim JW, Yeom YI, Jang YJ, Ahn DK, Kim JW, Song EY (2012) Dysregulation of overexpressed IL-32alpha in hepatocellular carcinoma suppresses cell growth and induces apoptosis through inactivation of NF-kappaB and Bcl-2. Cancer Lett 318:226–233

    Article  CAS  Google Scholar 

  15. Nishida A, Andoh A, Inatomi O, Fujiyama Y (2009) Interleukin-32 expression in the pancreas. J Biol Chem 284:17868–17876

    Article  CAS  Google Scholar 

  16. Tsai CY, Wang CS, Tsai MM, Chi HC, Cheng WL, Tseng YH, Chen CY, Lin CD, Wu JI, Wang LH, Lin KH (2014) Interleukin-32 increases human gastric cancer cell invasion associated with tumor progression and metastasis. Clin Cancer Res Official J Am Assoc Can Res 20:2276–2288

    Article  CAS  Google Scholar 

  17. Zeng Q, Li S, Zhou Y, Ou W, Cai X, Zhang L, Huang W, Huang L, Wang Q (2014) Interleukin-32 contributes to invasion and metastasis of primary lung adenocarcinoma via NF-kappaB induced matrix metalloproteinases 2 and 9 expression. Cytokine 65:24–32

    Article  CAS  Google Scholar 

  18. Park ES, Yoo JM, Yoo HS, Yoon DY, Yun YP, Hong J (2014) IL-32gamma enhances TNF-alpha-induced cell death in colon cancer. Mol Carcinog 53(Suppl 1):E23–E35

    Article  CAS  Google Scholar 

  19. Park MH, Song MJ, Cho MC, Moon DC, Yoon do Y, Han SB, Hong JT (2012) Interleukin-32 enhances cytotoxic effect of natural killer cells to cancer cells via activation of death receptor 3. Immunology 135:63–72.

    Article  CAS  Google Scholar 

  20. Goda C, Kanaji T, Kanaji S, Tanaka G, Arima K, Ohno S, Izuhara K (2006) Involvement of IL-32 in activation-induced cell death in T cells. Int Immunol 18:233–240

    Article  CAS  Google Scholar 

  21. Lin X, Yang L, Wang G, Zi F, Yan H, Guo X, Chen J, Chen Q, Huang X, Li Y (2017) Interleukin-32α promotes the proliferation of multiple myeloma cells by inducing production of IL-6 in bone marrow stromal cells. Oncotarget 8:92841–92854

    Article  Google Scholar 

  22. Yan H, Dong M, Liu X, Shen Q, He D, Huang X, Zhang E, Lin X, Chen Q, Guo X, Chen J, Zheng G, Wang G, He J, Yi Q, Cai Z (2019) Multiple myeloma cell-derived IL-32γ increases the immunosuppressive function of macrophages by promoting indoleamine 2,3-dioxygenase (IDO) expression. Cancer Lett 446:38–48

    Article  CAS  Google Scholar 

  23. Liu Y, Yan H, Gu H, Zhang E, He J, Cao W, Qu J, Xu R, Cao L, He D, Zhang J, Hou Y, Cai Z (2022) Myeloma-derived IL-32gamma induced PD-L1 expression in macrophages facilitates immune escape via the PFKFB3-JAK1 axis. Oncoimmunology 11:2057837

    Article  Google Scholar 

  24. Zahoor M, Westhrin M, Aass KR, Moen SH, Misund K, Psonka-Antonczyk KM, Giliberto M, Buene G, Sundan A, Waage A (2017) Hypoxia promotes IL-32 expression in myeloma cells, and high expression is associated with poor survival and bone loss. Blood Adv 1:2656

    Article  CAS  Google Scholar 

  25. Xu R, Li Y, Yan H, Zhang E, Huang X, Chen Q, Chen J, Qu J, Liu Y, He J, Yi Q, Cai Z (2019) CCL2 promotes macrophages-associated chemoresistance via MCPIP1 dual catalytic activities in multiple myeloma. Cell Death Dis 10:781

    Article  Google Scholar 

  26. Netea MG, Lewis EC, Azam T, Joosten LA, Jaekal J, Bae SY, Dinarello CA, Kim SH (2008) Interleukin-32 induces the differentiation of monocytes into macrophage-like cells. Proc Natl Acad Sci USA 105:3515–3520

    Article  CAS  Google Scholar 

  27. Ohmatsu H, Humme D, Gonzalez J, Gulati N, Möbs M, Sterry W, Krueger JG (2016) IL-32 induces indoleamine 2,3-dioxygenase+CD1c+dendritic cells and indoleamine 2,3-dioxygenase+CD163+macrophages: relevance to Mycosis Fungoides progression. OncoImmunology.

  28. Chen X, Chen J, Zhang W, Sun R, Liu T, Zheng Y, Wu Y (2017) Prognostic value of diametrically polarized tumor-associated macrophages in multiple myeloma. Oncotarget 8:112685–112696

    Article  Google Scholar 

  29. Bronte V, Murray PJ (2015) Understanding local macrophage phenotypes in disease: modulating macrophage function to treat cancer. Nat Med 21:117–119

    Article  CAS  Google Scholar 

  30. Ushach I, Zlotnik A (2016) Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J Leukoc Biol 100:481–489

    Article  CAS  Google Scholar 

  31. Carola H. Ries, Michael A. Cannarile, Hoves S, Benz J, Wartha K, Runza V, Rey-Giraud F, Leon P. Pradel, Feuerhake F, Klaman I, Jones T, Jucknischke U, Scheiblich S, Kaluza K, Ingo H. Gorr, Walz A, Abiraj K, Philippe A. Cassier, Sica A, Gomez-Roca C, Karin E. de Visser, Italiano A, Le Tourneau C, Delord J-P, Levitsky H, BlayJ-Y, Rüttinger D (2014) Targeting tumor-associated macrophages with Anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25:846–859.

  32. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, Olson OC, Quick ML, Huse JT, Teijeiro V, Setty M, Leslie CS, Oei Y, Pedraza A, Zhang J, Brennan CW, Sutton JC, Holland EC, Daniel D, Joyce JA (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19:1264–1272

    Article  CAS  Google Scholar 

  33. Wang Q, Lu Y, Li R, Jiang Y, Zheng Y, Qian J, Bi E, Zheng C, Hou J, Wang S, Yi Q (2018) Therapeutic effects of CSF1R-blocking antibodies in multiple myeloma. Leukemia 32:176–183

    Article  CAS  Google Scholar 

  34. Paton-Hough J, Chantry AD, Lawson MA (2015) A review of current murine models of multiple myeloma used to assess the efficacy of therapeutic agents on tumour growth and bone disease. Bone 77:57–68

    Article  CAS  Google Scholar 

  35. Xia X, Li H, Satheesan S, Zhou J, Rossi JJ (2019) Humanized NOD/SCID/IL2rgammanull (hu-NSG) mouse model for HIV replication and latency studies. J Visualized Exp JoVE.

  36. Lee DH, Kim DH, Hwang CJ, Song S, Han SB, Kim Y, Yoo HS, Jung YS, Kim SH, Yoon DY, Hong JT (2015) Interleukin-32gamma attenuates ethanol-induced liver injury by the inhibition of cytochrome P450 2E1 expression and inflammatory responses. Clin Sci 128:695–706

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China [Grant numbers 81900209 and 81872322], Natural Science Foundation of Zhejiang Province [Grant number LQ22H080001] and Zhejiang Key Research and Development Project [Grant number 2020C03014].

Author information

Authors and Affiliations

Authors

Contributions

HY and JQ contributed to conceptualization, formal analysis, validation and writing—original draft. YL and RX contributed to data curation and writing—review and editing. HG, DH and YL contributed to investigation, software and methodology. EZ, YZ and JH contributed to visualization, project administration, and resources, JC and ZC contributed to funding acquisition, supervision, project administration, and validation.

Corresponding author

Correspondence to Zhen Cai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., He, D., Qu, J. et al. Interleukin-32γ promotes macrophage-mediated chemoresistance by inducing CSF1-dependent M2 macrophage polarization in multiple myeloma. Cancer Immunol Immunother 72, 327–338 (2023). https://doi.org/10.1007/s00262-022-03241-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-022-03241-1

Keywords

Navigation