Skip to main content

Advertisement

Log in

Tumor-infiltrating CD8+ T cells recognize a heterogeneously expressed functional neoantigen in clear cell renal cell carcinoma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Immune checkpoint inhibitors (ICIs) are used in cancer immunotherapy to block programmed death-1 and cytotoxic T-lymphocyte antigen 4, but the response rate for ICIs is still low and tumor cell heterogeneity is considered to be responsible for resistance to immunotherapy. Tumor-infiltrating lymphocytes (TILs) have an essential role in the anti-tumor effect of cancer immunotherapy; however, the specificity of TILs in renal cell carcinoma (RCC) is elusive. In this study, we analyzed a 58-year-old case with clear cell RCC (ccRCC) with the tumor showing macroscopic and microscopic heterogeneity. The tumor was composed of low-grade and high-grade ccRCC. A tumor cell line (1226 RCC cells) and TILs were isolated from the high-grade ccRCC lesion, and a TIL clone recognized a novel neoantigen peptide (YVVPGSPCL) encoded by a missense mutation of the tensin 1 (TNS1) gene in a human leukocyte antigen-C*03:03-restricted fashion. The TNS1 gene mutation was not detected in the low-grade ccRCC lesion and the TIL clone did not recognized low-grade ccRCC cells. The missense mutation of TNS1 encoding the S1309Y mutation was found to be related to cell migration by gene over-expression. These findings suggest that macroscopically and microscopically heterogenous tumors might show heterogenous gene mutations and reactivity to TILs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70:7–30

    Article  PubMed  Google Scholar 

  2. Fisher R, Gore M, Larkin J (2013) Current and future systemic treatments for renal cell carcinoma. Semin Cancer Biol 23:38–45

    PubMed  Google Scholar 

  3. Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386

    CAS  PubMed  Google Scholar 

  4. Hudes G, Carducci M, Tomczak P et al (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 356:2271–2281

    CAS  PubMed  Google Scholar 

  5. Motzer RJ, Escudier B, Oudard S et al (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372:449–456

    CAS  PubMed  Google Scholar 

  6. Motzer RJ, Rini BI, Bukowski RM et al (2006) Sunitinib in patients with metastatic renal cell carcinoma. JAMA 295:2516–2524

    CAS  PubMed  Google Scholar 

  7. Rini BI, Escudier B, Tomczak P et al (2011) Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet 378:1931–1939

    CAS  PubMed  Google Scholar 

  8. Sternberg CN, Davis ID, Mardiak J et al (2010) Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol 28:1061–1068

    CAS  PubMed  Google Scholar 

  9. Motzer RJ, Escudier B, McDermott DF et al (2015) Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N Engl J Med 373:1803–1813

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Motzer RJ, Tannir NM, McDermott DF et al (2018) Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med 378:1277–1290

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Motzer RJ, Penkov K, Haanen J et al (2019) Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 380:1103–1115

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Rini BI, Plimack ER, Stus V et al (2019) Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 380:1116–1127

    CAS  PubMed  Google Scholar 

  13. Motzer RJ, Bacik J, Murphy BA et al (2002) Interferon-alfa as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma. J Clin Oncol 20:289–296

    CAS  PubMed  Google Scholar 

  14. Klapper JA, Downey SG, Smith FO et al (2008) High-dose interleukin-2 for the treatment of metastatic renal cell carcinoma : a retrospective analysis of response and survival in patients treated in the surgery branch at the National Cancer Institute between 1986 and 2006. Cancer 113:293–301

    CAS  PubMed  Google Scholar 

  15. Yang JC, Childs R (2006) Immunotherapy for renal cell cancer. J Clin Oncol 24:5576–5583

    CAS  PubMed  Google Scholar 

  16. Brahmer JR, Tykodi SS, Chow LQM et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lawrence MS, Stojanov P, Polak P et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–218

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yarchoan M, Hopkins A, Jaffee EM (2017) Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med 377:2500–2501

    PubMed  PubMed Central  Google Scholar 

  19. Turajlic S, Litchfield K, Xu H et al (2017) Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol 18:1009–1021

    CAS  PubMed  Google Scholar 

  20. Smith CC, Beckermann KE, Bortone DS et al (2018) Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell carcinoma. J Clin Invest 128:4804–4820

    PubMed  PubMed Central  Google Scholar 

  21. Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T (2014) Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 14:135–146

    CAS  PubMed  Google Scholar 

  22. Sato E, Torigoe T, Hirohashi Y et al (2008) Identification of an immunogenic CTL epitope of HIFPH3 for immunotherapy of renal cell carcinoma. Clin Cancer Res 14:6916–6923

    CAS  PubMed  Google Scholar 

  23. Gaugler B, Brouwenstijn N, Vantomme V et al (1996) A new gene coding for an antigen recognized by autologous cytolytic T lymphocytes on a human renal carcinoma. Immunogenetics 44:323–330

    CAS  PubMed  Google Scholar 

  24. Brändle D, Brasseur F, Weynants P et al (1996) A mutated HLA-A2 molecule recognized by autologous cytotoxic T lymphocytes on a human renal cell carcinoma. J Exp Med 183:2501–2508

    PubMed  Google Scholar 

  25. Van den Eynde BJ, Gaugler B, Probst-Kepper M et al (1999) A new antigen recognized by cytolytic T lymphocytes on a human kidney tumor results from reverse strand transcription. J Exp Med 190:1793–1800

    PubMed Central  Google Scholar 

  26. Morel S, Lévy F, Burlet-Schiltz O et al (2000) Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells. Immunity 12:107–117

    CAS  PubMed  Google Scholar 

  27. Clemente CG, Mihm MC Jr, Bufalino R et al (1996) Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 77:1303–1310

    CAS  PubMed  Google Scholar 

  28. Dieci MV, Mathieu MC, Guarneri V et al (2015) Prognostic and predictive value of tumor-infiltrating lymphocytes in two phase III randomized adjuvant breast cancer trials. Ann Oncol 26:1698–1704

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Geng Y, Shao Y, He W et al (2015) Prognostic role of tumor-infiltrating lymphocytes in lung cancer: a meta-analysis. Cell Physiol Biochem 37:1560–1571

    CAS  PubMed  Google Scholar 

  30. Badalamenti G, Fanale D, Incorvaia L et al (2019) Role of tumor-infiltrating lymphocytes in patients with solid tumors: Can a drop dig a stone? Cell Immunol 343:103753

    CAS  PubMed  Google Scholar 

  31. Nakano O, Sato M, Naito Y et al (2001) Proliferative activity of intratumoral CD8(+) T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Res 61:5132–5136

    CAS  PubMed  Google Scholar 

  32. Remark R, Alifano M, Cremer I et al (2013) Characteristics and clinical impacts of the immune environments in colorectal and renal cell carcinoma lung metastases: influence of tumor origin. Clin Cancer Res 19:4079–4091

    CAS  PubMed  Google Scholar 

  33. Giraldo NA, Becht E, Pagès F et al (2015) Orchestration and prognostic significance of immune checkpoints in the microenvironment of primary and metastatic renal cell cancer. Clin Cancer Res 21:3031–3040

    CAS  PubMed  Google Scholar 

  34. Simoni Y, Becht E, Fehlings M et al (2018) Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557:575–579

    CAS  PubMed  Google Scholar 

  35. Morita R, Hirohashi Y, Nakatsugawa M et al (2014) Production of multiple CTL epitopes from multiple tumor-associated antigens. Methods Mol Biol 1139:345–355

    CAS  PubMed  Google Scholar 

  36. Asano T, Hirohashi Y, Torigoe T et al (2016) Brother of the regulator of the imprinted site (BORIS) variant subfamily 6 is involved in cervical cancer stemness and can be a target of immunotherapy. Oncotarget 7:11223–11237

    PubMed  PubMed Central  Google Scholar 

  37. Akatsuka Y, Goldberg TA, Kondo E et al (2002) Efficient cloning and expression of HLA class I cDNA in human B-lymphoblastoid cell lines. Tissue Antigens 59:502–511

    CAS  PubMed  Google Scholar 

  38. Nakatsugawa M, Hirohashi Y, Torigoe T et al (2009) Novel spliced form of a lens protein as a novel lung cancer antigen, Lengsin splicing variant 4. Cancer Sci 100:1485–1493

    CAS  PubMed  Google Scholar 

  39. Morita S, Kojima T, Kitamura T (2000) Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther 7:1063–1066

    CAS  PubMed  Google Scholar 

  40. Ogawa T, Hirohashi Y, Murai A et al (2017) ST6GALNAC1 plays important roles in enhancing cancer stem phenotypes of colorectal cancer via the Akt pathway. Oncotarget 8:112550–112564

    PubMed  PubMed Central  Google Scholar 

  41. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26:589–595

    PubMed  PubMed Central  Google Scholar 

  42. do Valle ÍF, Giampieri E, Simonetti G, et al (2016) Optimized pipeline of MuTect and GATK tools to improve the detection of somatic single nucleotide polymorphisms in whole-exome sequencing data. BMC Bioinform 17:341

    Google Scholar 

  43. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164

    PubMed  PubMed Central  Google Scholar 

  44. Tran E, Robbins PF, Lu Y-C et al (2016) T-cell transfer therapy targeting mutant KRAS in cancer. N Engl J Med 375:2255–2262

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Deniger DC, Pasetto A, Robbins PF et al (2018) T-cell responses to TP53 “hotspot” mutations and unique neoantigens expressed by human ovarian cancers. Clin Cancer Res 24:5562–5573

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen H, Duncan IC, Bozorgchami H, Lo SH (2002) Tensin1 and a previously undocumented family member, tensin2, positively regulate cell migration. Proc Natl Acad Sci USA 99:733–738

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gaudin C, Kremer F, Angevin E et al (1999) A hsp70-2 mutation recognized by CTL on a human renal cell carcinoma. J Immunol 162:1730–1738

    CAS  PubMed  Google Scholar 

  48. Ronsin C, Chung-Scott V, Poullion I et al (1999) A non-AUG-defined alternative open reading frame of the intestinal carboxyl esterase mRNA generates an epitope recognized by renal cell carcinoma-reactive tumor-infiltrating lymphocytes in situ. J Immunol 163:483–490

    CAS  PubMed  Google Scholar 

  49. Hanada K, Perry-Lalley DM, Ohnmacht GA et al (2001) Identification of fibroblast growth factor-5 as an overexpressed antigen in multiple human adenocarcinomas. Cancer Res 61:5511–5516

    CAS  PubMed  Google Scholar 

  50. Hanada K-I, Yewdell JW, Yang JC (2004) Immune recognition of a human renal cancer antigen through post-translational protein splicing. Nature 427:252–256

    CAS  PubMed  Google Scholar 

  51. Hansen UK, Ramskov S, Bjerregaard A-M et al (2020) Tumor-infiltrating T cells from clear cell renal cell carcinoma patients recognize neoepitopes derived from point and frameshift mutations. Front Immunol 11:373

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Vissers JL, De Vries IJ, Schreurs MW et al (1999) The renal cell carcinoma-associated antigen G250 encodes a human leukocyte antigen (HLA)-A2.1-restricted epitope recognized by cytotoxic T lymphocytes. Cancer Res 59:5554–5559

    CAS  PubMed  Google Scholar 

  53. Nishizawa S, Hirohashi Y, Torigoe T et al (2012) HSP DNAJB8 controls tumor-initiating ability in renal cancer stem-like cells. Cancer Res 72:2844–2854

    CAS  PubMed  Google Scholar 

  54. Flad T, Spengler B, Kalbacher H et al (1998) Direct identification of major histocompatibility complex class I-bound tumor-associated peptide antigens of a renal carcinoma cell line by a novel mass spectrometric method. Cancer Res 58:5803–5811

    CAS  PubMed  Google Scholar 

  55. Walter S, Weinschenk T, Stenzl A et al (2012) Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 18:1254–1261

    CAS  PubMed  Google Scholar 

  56. Hu Z, Leet DE, Allesøe RL et al (2021) Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma. Nat Med. https://doi.org/10.1038/s41591-020-01206-4

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gooden MJM, de Bock GH, Leffers N et al (2011) The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer 105:93–103

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Duhen T, Duhen R, Montler R et al (2018) Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat Commun 9:2724

    PubMed  PubMed Central  Google Scholar 

  59. Qi Y, Xia Y, Lin Z et al (2020) Tumor-infiltrating CD39+ CD8+ T cells determine poor prognosis and immune evasion in clear cell renal cell carcinoma patients. Cancer Immunol Immunother 69:1565–1576

    CAS  PubMed  Google Scholar 

  60. Wu J, Wang Y-C, Xu W-H et al (2020) High expression of CD39 is associated with poor prognosis and immune infiltrates in clear cell renal cell carcinoma. Onco Targets Ther 13:10453–10464

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Matsushita H, Sato Y, Karasaki T et al (2016) Neoantigen load, antigen presentation machinery, and immune signatures determine prognosis in clear cell renal cell carcinoma. Cancer Immunol Res 4:463–471

    CAS  PubMed  Google Scholar 

  62. Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348:69–74

    CAS  PubMed  Google Scholar 

  63. Kurahashi R, Motoshima T, Fukushima Y et al (2020) Remarkable antitumor effect of nivolumab in a patient with metastatic renal cell carcinoma previously treated with a peptide-based vaccine. IJU Case Rep 3:44–48

    PubMed  PubMed Central  Google Scholar 

  64. Kawashima A, Kanazawa T, Kidani Y et al (2020) Tumour grade significantly correlates with total dysfunction of tumour tissue-infiltrating lymphocytes in renal cell carcinoma. Sci Rep 10:6220

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lo SH, An Q, Bao S et al (1994) Molecular cloning of chick cardiac muscle tensin. Full-length cDNA sequence, expression, and characterization. J Biol Chem 269:22310–22319

    CAS  PubMed  Google Scholar 

  66. Chen H, Ishii A, Wong W-K et al (2000) Molecular characterization of human tensin. Biochem J 351:403

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hall EH, Daugherty AE, Choi CK et al (2009) Tensin1 requires protein phosphatase-1alpha in addition to RhoGAP DLC-1 to control cell polarization, migration, and invasion. J Biol Chem 284:34713–34722

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kiflemariam S, Ljungström V, Pontén F, Sjöblom T (2015) Tumor vessel up-regulation of INSR revealed by single-cell expression analysis of the tyrosine kinome and phosphatome in human cancers. Am J Pathol 185:1600–1609

    CAS  PubMed  Google Scholar 

  69. Zhou H, Zhang Y, Wu L et al (2018) Elevated transgelin/TNS1 expression is a potential biomarker in human colorectal cancer. Oncotarget 9:1107–1113

    PubMed  Google Scholar 

  70. Duan J, Wang L, Shang L et al (2020) miR-152/TNS1 axis promotes non-small cell lung cancer progression through Akt/mTOR/RhoA pathway. Biosci Rep. https://doi.org/10.1042/BSR20201539

  71. Gerlinger M, Rowan AJ, Horswell S et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kawashima A, Kanazawa T, Goto K et al (2018) Immunological classification of renal cell carcinoma patients based on phenotypic analysis of immune check-point molecules. Cancer Immunol Immunother 67:113–125

    CAS  PubMed  Google Scholar 

  73. Kochin V, Kanaseki T, Tokita S et al (2017) HLA-A24 ligandome analysis of colon and lung cancer cells identifies a novel cancer-testis antigen and a neoantigen that elicits specific and strong CTL responses. Oncoimmunology 6:e1293214

    PubMed  PubMed Central  Google Scholar 

  74. Tsukahara T, Nabeta Y, Kawaguchi S et al (2004) Identification of human autologous cytotoxic T-lymphocyte-defined osteosarcoma gene that encodes a transcriptional regulator, papillomavirus binding factor. Cancer Res 64:5442–5448

    CAS  PubMed  Google Scholar 

  75. Hirohashi Y, Torigoe T, Maeda A et al (2002) An HLA-A24-restricted cytotoxic T lymphocyte epitope of a tumor-associated protein, survivin. Clin Cancer Res 8:1731–1739

    CAS  PubMed  Google Scholar 

  76. Robbins PF, Lu Y-C, El-Gamil M et al (2013) Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med 19:747–752

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lu Y-C, Yao X, Crystal JS et al (2014) Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressions. Clin Cancer Res 20:3401–3410

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Gee MH, Han A, Lofgren SM et al (2018) Antigen identification for orphan T cell receptors expressed on tumor-infiltrating lymphocytes. Cell 172:549-563.e16

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (JSPS), KAKENHI for T. Torigoe (17H01540) and Y. Hirohashi (20H03460). This work was also supported by the Japan Agency for Medical Research and Development (AMED), the Project for Cancer Research and Therapeutic Evolution (P-CREATE) for T. Torigoe (16770510) and T. Kanaseki (20cm0106352h0002), and the Japan Science and Technology Agency (JST), CREST Grant Number JPMJCR15G3 for S. Hashimoto.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Masahiro Matsuki, Yoshihiko Hirohashi, Munehide Nakatsugara, Aiko Murai, Terufumi Kubo, Shinichi Hashimoto, Serina Tokita, Kenji Murata, Takayuki Kanaseki, Tomohide Tsukahara, Sachiyo Nishida, Toshiaki Tanaka, Hiroshi Kitamura, Naoya Masumori and Toshihiko Torigoe. The first draft of the manuscript was written by Masahiro Matsuki, Yoshihiko Hirohashi, Naoya Masumori and Toshihiko Torigoe, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yoshihiko Hirohashi or Toshihiko Torigoe.

Ethics declarations

Conflict of interest

The authors have no financial conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuki, M., Hirohashi, Y., Nakatsugawa, M. et al. Tumor-infiltrating CD8+ T cells recognize a heterogeneously expressed functional neoantigen in clear cell renal cell carcinoma. Cancer Immunol Immunother 71, 905–918 (2022). https://doi.org/10.1007/s00262-021-03048-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-03048-6

Keywords

Navigation