Skip to main content

Advertisement

Log in

EGFR mutation status in non-small cell lung cancer receiving PD-1/PD-L1 inhibitors and its correlation with PD-L1 expression: a meta-analysis

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Meta-analysis was performed on the Web of Science, PubMed, Embase, and Cochrane databases to evaluate the effect of epidermal growth factor receptor (EGFR) mutation status on programmed cell death protein 1/programmed death ligand 1 (PD-1/PD-L1) immune checkpoint inhibitors, and the association between EGFR mutation status and PD-L1 expression in non-small cell lung cancer (NSCLC) patients. Pooled effect (hazard ratio/odds ratio, HR/OR) with 95% confidence interval (CI) was calculated, and the source of heterogeneity was explored by subgroup analysis and meta-regression using Stata/SE 15.0. Meta-analysis of the association between EGFR mutation status and overall survival (OS) in NSCLC with immunotherapy was calculated from four randomized controlled trials. We found that immune checkpoint inhibitors significantly prolonged OS over docetaxel overall (HR 0.71, 95% CI 0.64–0.79) and in the EGFR wild type (HR = 0.67, 95% CI = 0.60–0.75), but not in the EGFR mutant subgroup (HR = 1.11, 95% CI = 0.80–1.52). Meta-analysis of the association between EGFR mutation status and PD-L1 expression in NSCLC included 32 studies. The pooled OR and 95% CI were 0.60 (0.46–0.80), calculated by random effects model. No source of heterogeneity was found in subgroup analysis. Sensitivity analysis was carried out with a fixed model, and the influence of a single study on the pooled results showed no significant change with robust meta-analysis methods. Harbord’s weighted linear regression test (P = 0.956) and Peters regression test (P = 0.489) indicated no significant publication bias. The limited benefit of single-agent PD-1/PD-L1 inhibitors in the second-line or later setting for EGFR-mutated NSCLC may be partly due to the lower expression of PD-L1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ALK:

Anaplastic lymphoma kinase

ECOG:

Eastern cooperative oncology group

EGFR:

Epidermal growth factor receptor

ERK:

Extracellular signal-regulated kinase

MAPK:

Mitogen-activated protein kinase

MEK:

Mitogen/extracellular signal-regulated kinases

NF-κB:

Nuclear factor kappa-B

NSCLC:

Non-small cell lung cancer

p–c-Jun:

Phospho-c-Jun

PD-1:

Programmed cell death protein 1

PD-L1:

Programmed death ligand 1

p-ERK:

Phospho-extracellular regulated protein kinases

PS:

Performance status

PI3K-AKT:

Phosphatidylinositide 3-kinases-protein kinase B

SCLC:

Small cell lung cancer

STAT:

Signal transducer and activator of transcription

STROBE-ME:

The strengthening of reporting observational studies in epidemiology-molecular epidemiology

TKIs:

Tyrosine kinase inhibitors

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  2. Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH et al (2016) Cancer treatment and survivorship statistics. CA Cancer J Clin 66(4):271–289

    Article  PubMed  Google Scholar 

  3. Sharpe AH, Freeman GJ (2002) The B7-CD28 superfamily. Nat Rev Immunol 2(2):116–126

    Article  CAS  PubMed  Google Scholar 

  4. Sznol M, Chen L (2013) Antagonist antibodies to PD-1 and B7–H1 (PD-L1) in the treatment of advanced human cancer. Clin Cancer Res 19(19):5542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373(17):1627–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rizvi NA, Mazières J, Planchard D, Stinchcombe TE, Dy GK, Antonia SJ et al (2015) Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol 16(3):257–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J et al (2017) Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 389:10066

    Article  Google Scholar 

  9. Mok TS, Wu YL, Thongprasert S, Yang C-H, Chu D-T, Saijo N, Sunpaweravong P et al (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Eng J Med 361(10):947–957

    Article  CAS  Google Scholar 

  10. Jänne PA, Wang X, Socinski MA, Crawford J, Stinchcombe TE, Gu L, Capelletti M et al (2012) Randomized phase II trial of erlotinib alone or with carboplatin and paclitaxel in patients who were never or light former smokers with advanced lung adenocarcinoma: CALGB 30406 trial. J Clin Oncol 30(17):2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Johnson BE, Jänne PA (2005) Epidermal growth factor receptor mutations in patients with non-small cell lung cancer. Cancer Res 65(17):7525–7529

    Article  CAS  PubMed  Google Scholar 

  12. Wu CT, Lin MW, Hsieh M-S, Kuo S-W, Chang Y-L (2014) New aspects of the clinicopathology and genetic profile of metachronous multiple lung cancers. Annals Surg 259(5):1018–1024

    Article  Google Scholar 

  13. Chang YL, Wu CT, Lin S-C, Hsiao C-F, Jou Y-S, Lee Y-C (2007) Clonality and prognostic implications of p53 and epidermal growth factor receptor somatic aberrations in multiple primary lung cancers. Clin Cancer Res 13(1):52–58

    Article  CAS  PubMed  Google Scholar 

  14. Azuma K, Ota K, Kawahara A, Hattori S, Iwama E, Harada T et al (2014) Association of PD-L1 overexpression with activating EGFR mutations in surgically resected nonsmall-cell lung cancer. Annals Oncology 25(10):1935–1940

    Article  CAS  Google Scholar 

  15. Akbay EA, Koyama S, Carretero J, Altabef A, Tchaicha JH, Christensen CL, Mikse OR et al (2013) Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discovery 3(12):1355–1363

    Article  CAS  PubMed  Google Scholar 

  16. Inoue Y, Yoshimura K, Mori K, Kurabe N, Kahyo T, Mori H et al (2016) Clinical significance of PD-L1 and PD-L2 copy number gains in non-small-cell lung cancer. Oncotarget 7(22):32113–32128

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cha YJ, Kim HR, Lee CY, Cho BC, Shim HS (2016) Clinicopathological and prognostic significance of programmed cell death ligand-1 expression in lung adenocarcinoma and its relationship with p53 status. Lung Cancer (Amsterdam, Netherlands) 97:73–80

    Article  Google Scholar 

  18. Takada K, Okamoto T, Shoji F, Shimokawa M, Akamine T, Takamori S et al (2016) Clinical significance of PD-L1 protein expression in surgically resected primary lung adenocarcinoma. J Thorac Oncology 11(11):1879–1890

    Article  Google Scholar 

  19. Cooper WA, Tran T, Vilain RE, Madore J, Selinger CI, Kohonen-Corish M et al (2015) PD-L1 expression is a favorable prognostic factor in early stage non-small cell carcinoma. Lung Cancer (Amsterdam, Netherlands) 89(2):181–188

    Article  Google Scholar 

  20. Schmidt LH, Kümmel A, Görlich D, Mohr M, Bröckling S, Mikesch JH et al (2015) PD-1 and PD-L1 expression in NSCLC indicate a favorable prognosis in defined subgroups. PloS One 10(8):e0136023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tang Y, Fang W, Zhang Y, Hong S, Kang S, Yan Y et al (2015) The association between PD-L1 and EGFR status and the prognostic value of PD-L1 in advanced non-small cell lung cancer patients treated with EGFR-TKIs. Oncotarget 6(16):14209–14219

    Article  PubMed  PubMed Central  Google Scholar 

  22. Oremus M, Wolfson C, Perrault A, Demers L, Momoli F, Moride Y (2001) Interrater reliability of the modified jadad quality scale for systematic reviews of alzheimer’s disease drug trials. Dement Geriatr Cognitive Disord 12(3):232–236

    Article  CAS  Google Scholar 

  23. Gallo V, Egger M, McCormack V, Farmer PB, Ioannidis JPA, Kirsch-Volders M, Matullo G et al (2012) Strengthening the reporting of observational studies in epidemiology-molecular epidemiology (STROBE-ME): an extension of the STROBE statement. Mutagenesis 27(1):17–29

    Article  CAS  PubMed  Google Scholar 

  24. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558

    Article  PubMed  Google Scholar 

  25. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560

    Article  PubMed  PubMed Central  Google Scholar 

  26. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188

    Article  CAS  PubMed  Google Scholar 

  27. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22(4):719–748

    CAS  PubMed  Google Scholar 

  28. Duval S, Tweedie R (2000) Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56(6):455–463

    Article  CAS  PubMed  Google Scholar 

  29. Harbord RM, Egger M, Sterne JAC (2006) A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat Med 25(20):3443–3457

    Article  PubMed  Google Scholar 

  30. Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L (2006) Comparison of two methods to detect publication bias in meta-analysis. Jama 295(6):676–680

    Article  CAS  PubMed  Google Scholar 

  31. Palmer TM, Peters JL, Sutton AJ, Moreno SG (2008) Contour enhanced funnel plots for meta-analysis. Stata J 8(2):242–254

    Article  Google Scholar 

  32. Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, Poddubskaya E, Antonia S et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Eng J Med 373(2):123–135

    Article  CAS  Google Scholar 

  33. Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J et al (2016) Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 387(10030):1837–1846

    Article  CAS  PubMed  Google Scholar 

  34. Herbst RS, Baas P, Kim DW, Felip E, Pérez-Gracia JL, Han JY et al (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387(10027):1540–1550

    Article  CAS  PubMed  Google Scholar 

  35. Yang CY, Lin MW, Chang YL, Wu CT, Yang PC (2014) Programmed cell death-ligand 1 expression in surgically resected stage I pulmonary adenocarcinoma and its correlation with driver mutations and clinical outcomes. Eur J Cancer (Oxford, England 1990) 50(7):1361–1369

    Article  CAS  Google Scholar 

  36. Zhang Y, Wang L, Li Y, Pan Y, Wang R, Hu H et al (2014) Protein expression of programmed death 1 ligand 1 and ligand 2 independently predict poor prognosis in surgically resected lung adenocarcinoma. Oncotargets Ther 7:567

    Article  CAS  Google Scholar 

  37. D’Incecco A, Landi L et al (2015) PD-1 and PD-L1 expression in molecularly selected non-small-cell lung cancer patients. Br J Cancer 112(1):95–102

    Article  CAS  PubMed  Google Scholar 

  38. Fang W, Hong S, Chen N, He X, Zhan J, Qin T et al (2015) PD-L1 is remarkably over-expressed in EBV-associated pulmonary lymphoepithelioma-like carcinoma and related to poor disease-free survival. Oncotarget 6(32):33019–33032

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kim MY, Koh J, Kim S, Go H, Jeon YK, Chung DH (2015) Clinicopathological analysis of PD-L1 and PD-L2 expression in pulmonary squamous cell carcinoma: comparison with tumor-infiltrating T cells and the status of oncogenic drivers. Lung Cancer (Amsterdam, Netherlands) 88(1):24–33

    Article  Google Scholar 

  40. Koh J, Go H, Keam B, Kim MY, Nam SJ, Kim TM et al (2015) Clinicopathologic analysis of programmed cell death-1 and programmed cell death-ligand 1 and 2 expressions in pulmonary adenocarcinoma comparison with histology and driver oncogenic alteration status. Mod Pathol 28(9):1154–1166

    Article  CAS  PubMed  Google Scholar 

  41. Omori S, Kenmotsu H, Abe M, Watanabe R, Sugino T, Kobayashi H et al (2018) Changes in programmed death ligand 1 expression in non-small cell lung cancer patients who received anticancer treatments. Int J Clin Oncol 23(6):1052–1059

    Article  CAS  PubMed  Google Scholar 

  42. Chang YL, Yang CY, Lin MW, Wu CT, Yang PC (2016) High co-expression of PD-L1 and HIF-1α correlates with tumour necrosis in pulmonary pleomorphic carcinoma. Eur J Cancer (Oxford, England 1990) 60:125–135

    Article  CAS  Google Scholar 

  43. Huynh TG, Morales-Oyarvide V, Campo MJ, Gainor JF, Bozkurtlar E, Uruga H et al (2016) Programmed cell death ligand 1 expression in resected lung adenocarcinomas: association with immune microenvironment. J Thorac Oncol Off Publ Int Assoc Study of Lung Cancer 11(11):1869–1878

    Google Scholar 

  44. Inamura K, Yokouchi Y, Sakakibara R, Kobayashi M, Subat S, Ninomiya H et al (2016) Relationship of tumor PD-L1 expression with EGFR wild-type status and poor prognosis in lung adenocarcinoma. Jpn J Clin Oncol 46(10):935–941

    Article  PubMed  Google Scholar 

  45. Ji M, Liu Y, Li Q, Li X, Ning Z, Zhao W et al (2016) PD-1/PD-L1 expression in non-small-cell lung cancer and its correlation with EGFR/KRAS mutations. Cancer Biol Ther 17(4):407–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mori S, Motoi N, Ninomiya H, Matsuura Y, Nakao M, Mun M et al (2017) High expression of programmed cell death 1 ligand 1 in lung adenocarcinoma is a poor prognostic factor particularly in smokers and wild-type epidermal growth-factor receptor cases. Pathol Int 67(1):37–44

    Article  CAS  PubMed  Google Scholar 

  47. Song J, Yang C, Fan L, Wang K, Yang F, Liu S et al (2016) Lung lesion extraction using a toboggan based growing automatic segmentation approach. IEEE Trans Med Imaging 35(1):337–353

    Article  PubMed  Google Scholar 

  48. Yang CY, Lin MW, Chang YL, Wu CT, Yang PC (2016) Programmed cell death-ligand 1 expression is associated with a favourable immune microenvironment and better overall survival in stage I pulmonary squamous cell carcinoma. Eur J Cancer (Oxford, England 1990) 57:91–103

    Article  CAS  Google Scholar 

  49. Chen J, Li H, Pang R, Huang J (2017) Altered status of programmed death-ligand 1 after recurrence in resected lung adenocarcinoma patients. Onco Targets Ther 10:2003–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hirai A, Yoneda K, Shimajiri S, Kuroda K, Hanagiri T, Fujino Y et al (2018) Prognostic impact of programmed death-ligand 1 expression in correlation with human leukocyte antigen class I expression status in stage I adenocarcinoma of the lung. J Thorac Cardiovasc Surg 155(1):382–92.e1

    Article  CAS  PubMed  Google Scholar 

  51. Toyokawa G, Takada K, Okamoto T, Kawanami S, Kozuma Y, Matsubara T et al (2017) Relevance between programmed death ligand 1 and radiologic invasiveness in pathologic stage I lung adenocarcinoma. Ann Thorac Surg 103(6):1750–1757

    Article  PubMed  Google Scholar 

  52. Tsao MS, Le Teuff G, Shepherd FA, Landais C, Hainaut P, Filipits M et al (2017) PD-L1 protein expression assessed by immunohistochemistry is neither prognostic nor predictive of benefit from adjuvant chemotherapy in resected non-small cell lung cancer. Annals of Oncol Off J Eur Soc Med Oncol 28(4):882–889

    Article  Google Scholar 

  53. Haratake N, Toyokawa G, Takada K, Kozuma Y, Matsubara T, Takamori S et al (2018) Programmed death-ligand 1 expression and EGFR mutations in multifocal lung cancer. Ann Thorac Surg 105(2):448–454

    Article  PubMed  Google Scholar 

  54. Takada K, Toyokawa G, Tagawa T, Kohashi K, Shimokawa M, Akamine T et al (2018) PD-L1 expression according to the EGFR status in primary lung adenocarcinoma. Lung Cancer (Amsterdam, Netherlands) 116:1–6

    Article  Google Scholar 

  55. Yoneshima Y, Ijichi K, Anai S, Ota K, Otsubo K, Iwama E et al (2018) PD-L1 expression in lung adenocarcinoma harboring EGFR mutations or ALK rearrangements. Lung Cancer (Amsterdam, Netherlands) 118:36–40

    Article  Google Scholar 

  56. Cho JH, Jung HA, Lee SH, Ahn JS, Ahn MJ, Park K et al (2019) Impact of EGFR mutation on the clinical efficacy of PD-1 inhibitors in patients with pulmonary adenocarcinoma. J Cancer Res Clin Oncol 145(5):1341–1349

    Article  CAS  PubMed  Google Scholar 

  57. Lee J, Park CK, Yoon HK, Sa YJ, Woo IS, Kim HR et al (2019) PD-L1 expression in ROS1-rearranged non-small cell lung cancer: a study using simultaneous genotypic screening of EGFR, ALK, and ROS1. Thoracic cancer 10(1):103–110

    Article  CAS  PubMed  Google Scholar 

  58. Lee SE, Kim YJ, Sung M, Lee MS, Han J, Kim HK et al (2019) Association with PD-L1 expression and clinicopathological features in 1000 lung cancers: a large single-institution study of surgically resected lung cancers with a high prevalence of EGFR mutation. Int J Mol Sci 20(19):4794

    Article  CAS  PubMed Central  Google Scholar 

  59. Song P, Wu S, Zhang L, Zeng X, Wang J (2019) Correlation between PD-L1 expression and clinicopathologic features in 404 patients with lung adenocarcinoma. Interdiscip Sci Comput Life Sci 11(2):258–265

    Article  CAS  Google Scholar 

  60. Wen S, Jiang Y, Guo J, Fan X, Pan X, Dai Y et al (2019) P2.09–32 higher prevalence of EGFR mutations significantly correlates with lower PD-L1 expression in Chinese lung adenocarcinoma. J Thoracic Oncol 14(10):S782–S783

    Article  Google Scholar 

  61. Ye L, Leslie C, Jacques A, Mesbah Ardakani N, Amanuel B, Millward M (2019) Programmed death ligand-1 expression in non-small cell lung cancer in a Western Australian population and correlation with clinicopathologic features. Mod Pathol 32(4):524–531

    Article  CAS  PubMed  Google Scholar 

  62. Rittmeyer A, Smith D, Vansteenkiste J, Fehrenbacher L, Park K-S, Mazieres J et al (2017) Updated survival and biomarker analyses of a randomized phase II study of atezolizumab vs docetaxel in 2L/3L NSCLC (POPLAR). Pneumologie 71:S1–S125

    Google Scholar 

  63. Lee CK, Man J, Lord S, Links M, Gebski V, Mok T et al (2017) Checkpoint inhibitors in metastatic EGFR-mutated non-small cell lung cancer-a meta-analysis. J Thoracic Oncol 12(2):403–407

    Article  Google Scholar 

  64. Hui R, Gandhi L, Costa EC, Felip E, Ahn M-J, Eder JP, Balmanoukian A et al (2016) Long-term OS for patients with advanced NSCLC enrolled in the KEYNOTE-001 study of pembrolizumab (pembro). J Clin Oncol 34(15):9026

    Article  Google Scholar 

  65. Garassino MC, Cho BC, Kim JH, Mazières J, Vansteenkiste J, Lena H et al (2018) Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): an open-label, single-arm, phase 2 study. Lancet Oncol 19(4):521–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Haratani K, Hayashi H, Tanaka T, Kaneda H, Togashi Y, Sakai K et al (2017) Tumor immune microenvironment and nivolumab efficacy in EGFR mutation-positive non-small-cell lung cancer based on T790M status after disease progression during EGFR-TKI treatment. Annals Oncol 28(7):1532–1539

    Article  CAS  Google Scholar 

  67. Reck M, Mok TSK, Nishio M, Jotte RM, Cappuzzo F, Orlandi F et al (2019) Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir Med 7(5):387–401

    Article  CAS  PubMed  Google Scholar 

  68. Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N et al (2018) Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med 378(24):2288–2301

    Article  CAS  PubMed  Google Scholar 

  69. Chen N, Fang W, Zhan J, Zhan J, Hong S, Tang Y, Kang S, Zhang Y et al (2015) Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-driven NSCLC: implication for optional immune targeted therapy for NSCLC patients with EGFR mutation. J Thoracic Oncol 10(6):910–923

    Article  CAS  Google Scholar 

  70. Akca H, Tani M, Hishida T, Matsumoto S, Yokota J (2006) Activation of the AKT and STAT3 pathways and prolonged survival by a mutant EGFR in human lung cancer cells. Lung Cancer 54(1):25–33

    Article  PubMed  Google Scholar 

  71. Lin K, Cheng J, Yang T, Li Y, Zhu B (2015) EGFR-TKI down-regulates PD-L1 in EGFR mutant NSCLC through inhibiting NF-κB. Biochem Biophys Res Commun 463(1–2):95–101

    Article  CAS  PubMed  Google Scholar 

  72. Ota K, Azuma K, Kawahara A, Hattori S, Iwama E, Tanizaki J et al (2015) Induction of PD-L1 expression by the EML4-ALK oncoprotein and downstream signaling pathways in non-small cell lung cancer. Clin Cancer Res 21(17):4014–4021

    Article  CAS  PubMed  Google Scholar 

  73. Dong ZY, Zhong WZ, Zhang XC, Su J, Xie Z, Liu SY et al (2017) Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma. Clin Cancer Res 23(12):3012–3024

    Article  CAS  PubMed  Google Scholar 

  74. Sharma SV, Bell DW, Settleman J, Haber DA (2007) Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7(3):169–181

    Article  CAS  PubMed  Google Scholar 

  75. Shi Y, Au JS, Thongprasert S, Srinivasan S, Tsai C-M, Khoa MT, Heeroma K et al (2014) A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J Thorac Oncol 9(2):154–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kosaka T, Yatabe Y, Endoh H, Kuwano H, Takahashi T, Mitsudomi T (2004) Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Res 64(24):8919–8923

    Article  CAS  PubMed  Google Scholar 

  77. Li D, Zhu X, Wang H, Li N (2017) Association between PD-L1 expression and driven gene status in NSCLC: a meta-analysis. Eur J Surg Oncol 43(7):1372–1379

    Article  CAS  PubMed  Google Scholar 

  78. Lan B, Ma C, Zhang C, Chai S, Wang P, Ding L et al (2018) Association between PD-L1 expression and driver gene status in non-small-cell lung cancer: a meta-analysis. Oncotarget 9(7):7684

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by Fujian Program for Outstanding Young Researchers in University awarded by Education Department of Fujian (Grant Number 2017B019), Fujian Provincial Health Research Talents Training Programme Medical Innovation Project (Grant Number 2019- CX-33), Joint Funds for the innovation of science and Technology, Fujian Province (Grant Number 2019Y9022), and Fujian Provincial Health Research Talents Training Programme Youth Research Project (Grant Number 2019–1-58).The funding sponsors played no role in study design, data collection, data analysis, interpretation, writing of the report, or the decision to submit the paper for publication.

Author information

Authors and Affiliations

Authors

Contributions

HF and QML made substantial contributions to the conception and design of the study. YHM and ZJX contributed to data acquisition, and data analysis and interpretation. YHM, XRD, LYH, and ZJX wrote the manuscript. YFL and CL proofread the manuscript. All authors agree to be accountable for all aspects of the work. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Minglian Qiu or Fei He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This study was approved by the Institutional Review Board of Fujian Medical University (Fuzhou, China).

Consent to participate

Written informed consent for publication was obtained from all participants.

Consent to publish

The participant has consented to the submission of the case report to the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Zhu, J., Xiao, R. et al. EGFR mutation status in non-small cell lung cancer receiving PD-1/PD-L1 inhibitors and its correlation with PD-L1 expression: a meta-analysis. Cancer Immunol Immunother 71, 1001–1016 (2022). https://doi.org/10.1007/s00262-021-03030-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-03030-2

Keywords

Navigation