Skip to main content

Advertisement

Log in

Expression pattern, regulation, and clinical significance of TOX in breast cancer

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Thymocyte selection-associated high mobility group box protein (TOX) is a transcription factor implicated in the regulation of T cell exhaustion during chronic infection and cancer. While TOX is being targeted for cancer immunotherapy, limited information is available about its significance in breast cancer and other solid tumors. We performed a comprehensive analysis of TOX gene expression, its epigenetic regulation, protein localization, relation to tumor infiltrating immune cell composition, and prognostic significance in breast cancer using publicly available datasets. Our results suggest an inverse correlation between TOX expression and DNA methylation in tumor cells. However, its expression is elevated in tumor infiltrating immune cells (TIICs), which may compensates for the total TOX levels in the tumor as a whole. Furthermore, higher TOX levels in tumors are associated with T cell exhaustion signatures along with presence of active inflammatory response, including elevated levels of T cell effector cytokines. Survival analysis also confirmed that higher expression of TOX is associated with better prognosis in breast cancer. Therefore, expression of TOX may serve as a novel prognostic marker for this malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

All data sources are freely available to access and have been mentioned in “Materials and methods” section.

Abbreviations

APCs:

Antigen presenting cells

CNA:

Copy number alteration

CK6 :

Cytokeratin 6

CTLA-4:

Cytotoxic T-lymphocyte-associated protein 4

ER:

Estrogen receptor

GEO:

Gene Expression Omnibus

HMG:

High mobility group

HER2:

Human epidermal growth factor receptor 2

HPA:

Human Protein Atlas

ICPs:

Immune checkpoint proteins

PR:

Progesterone receptor

PD-1:

Programmed cell death protein 1

PD-L1:

Programmed death-ligand 1

TCGA:

The Cancer Genome Atlas

TOX:

Thymocyte selection-associated high mobility group box protein

TIICs:

Tumor infiltrating immune cells

TME:

Tumor microenvironment

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci 98:10869–10874. https://doi.org/10.1073/pnas.191367098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Salgado R, Loi S (2018) Tumour infiltrating lymphocytes in breast cancer: increasing clinical relevance. Lancet Oncol 19:3–5. https://doi.org/10.1016/S1470-2045(17)30905-1

    Article  PubMed  Google Scholar 

  4. Glajcar A, Szpor J, Hodorowicz-Zaniewska D, Tyrak KE, Okoń K (2019) The composition of T cell infiltrates varies in primary invasive breast cancer of different molecular subtypes as well as according to tumor size and nodal status. Virchows Arch 475:13–23. https://doi.org/10.1007/s00428-019-02568-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Khalil DN, Smith EL, Brentjens RJ, Wolchok JD (2016) The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 13:273–290. https://doi.org/10.1038/nrclinonc.2016.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Adams S, Gatti-Mays ME, Kalinsky K, Korde LA, Sharon E, Amiri-Kordestani L, Bear H, McArthur HL, Frank E, Perlmutter J, Page DB, Vincent B, Hayes JF et al (2019) Current landscape of immunotherapy in breast cancer: a review. JAMA Oncol 5:1205. https://doi.org/10.1001/jamaoncol.2018.7147

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bedognetti D, Ceccarelli M, Galluzzi L, Lu R, Palucka K, Samayoa J, Spranger S, Warren S, Wong K-K, Ziv E, Chowell D, Coussens LM, De Carvalho DD et al (2019) Toward a comprehensive view of cancer immune responsiveness: a synopsis from the SITC workshop. J ImmunoTher Cancer 7:131. https://doi.org/10.1186/s40425-019-0602-4

    Article  PubMed  PubMed Central  Google Scholar 

  8. García-Aranda M, Redondo M (2019) Targeting protein kinases to enhance the response to anti-PD-1/PD-L1 immunotherapy. IJMS 20:2296. https://doi.org/10.3390/ijms20092296

    Article  CAS  PubMed Central  Google Scholar 

  9. Uhercik M, Sanders AJ, Owen S, Davies EL, Sharma AK, Jiang WG, Mokbel K (2017) Clinical significance of PD1 and PDL1 in human breast cancer. Anticancer Res 37:4249–4254

    CAS  PubMed  Google Scholar 

  10. Yeong J, Lim JCT, Lee B, Li H, Ong CCH, Thike AA, Yeap WH, Yang Y, Lim AYH, Tay TKY, Liu J, Wong S-C, Chen J et al (2019) Prognostic value of CD8+ PD-1+ immune infiltrates and PDCD1 gene expression in triple negative breast cancer. J ImmunoTher Cancer 7:34. https://doi.org/10.1186/s40425-019-0499-y

    Article  PubMed  PubMed Central  Google Scholar 

  11. Egelston CA, Avalos C, Tu TY, Simons DL, Jimenez G, Jung JY, Melstrom L, Margolin K, Yim JH, Kruper L, Mortimer J, Lee PP (2018) Human breast tumor-infiltrating CD8+ T cells retain polyfunctionality despite PD-1 expression. Nat Commun. https://doi.org/10.1038/s41467-018-06653-9

    Article  PubMed  PubMed Central  Google Scholar 

  12. Doedens AL, Rubinstein MP, Gross ET, Best JA, Craig DH, Baker MK, Cole DJ, Bui JD, Goldrath AW (2016) Molecular programming of tumor-infiltrating CD8+ T cells and IL15 resistance. Cancer Immunol Res 4:799–811. https://doi.org/10.1158/2326-6066.CIR-15-0178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. O’Flaherty E, Kaye J (2003) TOX defines a conserved subfamily of HMG-box proteins. BMC Genomics 4:13. https://doi.org/10.1186/1471-2164-4-13

    Article  PubMed  PubMed Central  Google Scholar 

  14. Aliahmad P, Kaye J (2008) Development of all CD4 T lineages requires nuclear factor TOX. J Exp Med 205:245–256. https://doi.org/10.1084/jem.20071944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Khan O, Giles JR, McDonald S, Manne S, Ngiow SF, Patel KP, Werner MT, Huang AC, Alexander KA, Wu JE, Attanasio J, Yan P, George SM et al (2019) TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature 571:211–218. https://doi.org/10.1038/s41586-019-1325-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Scott AC, Dündar F, Zumbo P, Chandran SS, Klebanoff CA, Shakiba M, Trivedi P, Menocal L, Appleby H, Camara S, Zamarin D, Walther T, Snyder A et al (2019) TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571:270–274. https://doi.org/10.1038/s41586-019-1324-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Seo H, Chen J, González-Avalos E, Samaniego-Castruita D, Das A, Wang YH, López-Moyado IF, Georges RO, Zhang W, Onodera A, Wu C-J, Lu L-F, Hogan PG et al (2019) TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. PNAS 116:12410–12415. https://doi.org/10.1073/pnas.1905675116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim K, Park S, Kim GM, Park SM, Park SY, Kim DH, Park YM, Koh YW, Kim HR, Ha S-J, Lee I (2019) Single-cell transcriptome analysis revealed a role of the transcription factor TOX in promoting CD8+ T-cell exhaustion in cancer. Cancer Biol. https://doi.org/10.1101/641316

    Article  Google Scholar 

  19. Wang X, He Q, Shen H, Xia A, Tian W, Yu W, Sun B (2019) TOX promotes the exhaustion of antitumor CD8+ T cells by preventing PD1 degradation in hepatocellular carcinoma. J Hepatol. https://doi.org/10.1016/j.jhep.2019.05.015

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zeng D, Lin H, Cui J, Liang W (2019) TOX3 is a favorable prognostic indicator and potential immunomodulatory factor in lung adenocarcinoma. Oncol Lett 18:4144–4152. https://doi.org/10.3892/ol.2019.10748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen T, Li Q, Zhang X, Long R, Wu Y, Wu J, Fu X (2018) TOX expression decreases with progression of colorectal cancers and is associated with CD4 T-cell density and Fusobacterium nucleatum infection. Hum Pathol 79:93–101. https://doi.org/10.1016/j.humpath.2018.05.008

    Article  CAS  PubMed  Google Scholar 

  22. Tessema M, Yingling CM, Grimes MJ, Thomas CL, Liu Y, Leng S, Joste N, Belinsky SA (2012) Differential epigenetic regulation of TOX subfamily high mobility group box genes in lung and breast cancers. PLoS ONE. https://doi.org/10.1371/journal.pone.0034850

    Article  PubMed  PubMed Central  Google Scholar 

  23. Katayama MLH, Vieira RAdC, Andrade VP, Roela RA, Lima LGCA, Kerr LM, Campos APd, Pereira CAdB, Serio PAdMP, Encinas G, Maistro S, Petroni MdAL, Brentani MM et al (2019) Stromal cell signature associated with response to neoadjuvant chemotherapy in locally advanced breast cancer. Cells. https://doi.org/10.3390/cells8121566

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tang Z, Kang B, Li C, Chen T, Zhang Z (2019) GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res 47:W556–W560. https://doi.org/10.1093/nar/gkz430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Díez-Villanueva A, Mallona I, Peinado MA (2015) Wanderer, an interactive viewer to explore DNA methylation and gene expression data in human cancer. Epigenet Chromatin. https://doi.org/10.1186/s13072-015-0014-8

    Article  Google Scholar 

  26. Koch A, Jeschke J, Van Criekinge W, van Engeland M, De Meyer T (2019) MEXPRESS update 2019. Nucleic Acids Res 47:W561–W565. https://doi.org/10.1093/nar/gkz445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:l1. https://doi.org/10.1126/scisignal.2004088

    Article  CAS  Google Scholar 

  28. Pereira B, Chin S-F, Rueda OM, Vollan H-KM, Provenzano E, Bardwell HA, Pugh M, Jones L, Russell R, Sammut S-J, Tsui DWY, Liu B, Dawson S-J et al (2016) The somatic mutation profiles of 2433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun 7:11479. https://doi.org/10.1038/ncomms11479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lefebvre C, Bachelot T, Filleron T, Pedrero M, Campone M, Soria J-C, Massard C, Lévy C, Arnedos M, Lacroix-Triki M, Garrabey J, Boursin Y, Deloger M et al (2016) Mutational profile of metastatic breast cancers: a retrospective analysis. PLoS Med 13:e1002201. https://doi.org/10.1371/journal.pmed.1002201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, Turashvili G, Ding J, Tse K, Haffari G, Bashashati A, Prentice LM, Khattra J et al (2012) The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486:395–399. https://doi.org/10.1038/nature10933

    Article  CAS  PubMed  Google Scholar 

  31. Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, Lawrence MS, Sivachenko AY, Sougnez C, Zou L, Cortes ML, Fernandez-Lopez JC, Peng S et al (2012) Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486:405–409. https://doi.org/10.1038/nature11154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, Nik-Zainal S, Martin S, Varela I, Bignell GR, Yates LR, Papaemmanuil E, Beare D et al (2012) The landscape of cancer genes and mutational processes in breast cancer. Nature 486:400–404. https://doi.org/10.1038/nature11017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, Laird PW, Onofrio RC, Winckler W, Weir BA, Beroukhim R, Pellman D, Levine DA et al (2012) Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol 30:413–421. https://doi.org/10.1038/nbt.2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, Treviño V, Shen H, Laird PW, Levine DA, Carter SL, Getz G, Stemke-Hale K et al (2013) Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 4:2612. https://doi.org/10.1038/ncomms3612

    Article  CAS  PubMed  Google Scholar 

  35. Zuckerman NS, Yu HX, Simons DL, Bhattacharya N, Carcamo-Cavazos V, Yan N, Dirbas FM, Johnson DL, Schwartz EJ, Lee PP (2013) Altered local and systemic immune profiles underlie lymph node metastasis in breast cancer patients. Int J Cancer 132:2537–2547. https://doi.org/10.1002/ijc.27933

    Article  CAS  PubMed  Google Scholar 

  36. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, Olsson I, Edlund K, Lundberg E et al (2015) Proteomics. Tissue-based map of the human proteome. Science 347:1260419. https://doi.org/10.1126/science.1260419

    Article  CAS  PubMed  Google Scholar 

  37. Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, Li B, Liu XS (2017) TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res 77:e108–e110. https://doi.org/10.1158/0008-5472.CAN-17-0307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang T-H, Porta-Pardo E, Gao GF, Plaisier CL, Eddy JA, Ziv E, Culhane AC, Paull EO et al (2018) The immune landscape of cancer. Immunity 48(812–830):e14. https://doi.org/10.1016/j.immuni.2018.03.023

    Article  CAS  Google Scholar 

  39. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA (2018) Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol Biol 1711:243–259. https://doi.org/10.1007/978-1-4939-7493-1_12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Györffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, Szallasi Z (2010) An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 123:725–731. https://doi.org/10.1007/s10549-009-0674-9

    Article  CAS  PubMed  Google Scholar 

  41. Chung W, Kwabi-Addo B, Ittmann M, Jelinek J, Shen L, Yu Y, Issa J-PJ (2008) Identification of novel tumor markers in prostate, colon and breast cancer by unbiased methylation profiling. PLoS ONE. https://doi.org/10.1371/journal.pone.0002079

    Article  PubMed  PubMed Central  Google Scholar 

  42. Alfei F, Kanev K, Hofmann M, Wu M, Ghoneim HE, Roelli P, Utzschneider DT, von Hoesslin M, Cullen JG, Fan Y, Eisenberg V, Wohlleber D, Steiger K et al (2019) TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571:265–269. https://doi.org/10.1038/s41586-019-1326-9

    Article  CAS  PubMed  Google Scholar 

  43. Seksenyan A, Kadavallore A, Walts AE, de la Torre B, Berel D, Strom SP, Aliahmad P, Funari VA, Kaye J (2015) TOX3 is expressed in mammary ER+ epithelial cells and regulates ER target genes in luminal breast cancer. BMC Cancer 15:22. https://doi.org/10.1186/s12885-015-1018-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Aliahmad P, Seksenyan A, Kaye J (2012) The many roles of TOX in the immune system. Curr Opin Immunol 24:173–177. https://doi.org/10.1016/j.coi.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  45. Jeong H, Hwang I, Kang SH, Shin HC, Kwon SY (2019) Tumor-associated macrophages as potential prognostic biomarkers of invasive breast cancer. J Breast Cancer 22:38–51. https://doi.org/10.4048/jbc.2019.22.e5

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by grants from Indian Council of Medical Research (ICMR, India), Grant number 2019-2914 to SSC.

Author information

Authors and Affiliations

Authors

Contributions

MA conceptualized the study. SSC supervised the study and arranged funding. MA, SK, JS and AC performed data curation, interpretation and statistical analysis. SK performed the validation of all results. MA wrote the original manuscript. SK, AC and SSC edited the manuscript. All the authors have approved the manuscript.

Corresponding author

Correspondence to Shyam S. Chauhan.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, M., Kumari, S., Singh, J. et al. Expression pattern, regulation, and clinical significance of TOX in breast cancer. Cancer Immunol Immunother 70, 349–363 (2021). https://doi.org/10.1007/s00262-020-02689-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02689-3

Keywords

Navigation