Skip to main content

Advertisement

Log in

Interferon regulatory factor 1 (IRF-1) and IRF-2 regulate PD-L1 expression in hepatocellular carcinoma (HCC) cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The objective response rate of immune checkpoint blockade (ICB) in hepatocellular carcinoma (HCC) with anti PD-L1/PD-1 therapy is low. Discovering the signaling pathways regulating PD-L1 might help to improve ICB response rates. Here, we investigate transcription factors IRF-1 and IRF-2 signaling pathways regulating PD-L1 in HCC cells. In vivo studies show that IRF-1 and PD-L1 mRNA expression in human HCC tumors are significantly repressed compared with noncancerous background liver. IRF-1, IRF-2, and PD-L1 mRNA expression correlated positively in HCC tumors. Increased IRF-1 mRNA expression was observed in patients with well-differentiated or early stage HCC tumors. In vitro studies show that IFN-γ induces PD-L1 mRNA and protein expression through upregulation of IRF-1 in mouse and human HCC cells. IRF-1, IRF-2, and PD-L1 mRNA expression is upregulated in murine HCC by co-culture with effector T cells from spleen cells incubated with anti-CD3/CD28 antibodies. IRF-2 over-expression down-regulates IFN-γ induced PD-L1 promoter activity and protein levels in a dose-dependent manner. We identify two IRF-1 response elements (IRE1/IRE2) in the upstream 5′-flanking region of the CD274 (PD-L1) gene promoter. Site-directed mutagenesis shows both IRE1 and IRE2 are functional in transfection promoter assays. IRF-1 traditionally functions as tumor suppressor gene. However, these novel findings show a complex role for IRF-1 which upregulates PD-L1 in the inflammatory tumor microenvironment. IRF-1 antagonizes IRF-2 for binding to the IRE promoter element in PD-L1 which gives new insight to the regulation of PD-L1/PD-1 pathways in HCC ICB therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ATR:

Ataxia telangiectasia and Rad3-related protein

cGAS:

Cyclic guanosine monophosphate (GMP)–adenosine monophosphate (AMP) synthase

CHEK-1:

Check point kinase 1

CTLA-4:

Cytotoxic T-lymphocyte-associated protein 4

HCC:

Hepatocellular carcinoma

ICB:

Immune checkpoint blockade

IFN-γ:

Interferon-γ

IRE:

IRF response element

IRF-1:

Interferon regulatory factor 1

IRF-2:

Interferon regulatory factor 2

JAK:

Janus kinase

MARK:

Mitogen-activated protein kinase

PD-L1:

Programmed death-ligand 1

PD-1:

Programmed death protein 1

PI3K:

Phosphatidylinositol 3-kinase

RLU:

Relative luciferase unit

STAT:

Signal transducer and activator of transcription

STING:

Stimulator of interferon gene

TCGA:

The Cancer Genome Atlas

TNM:

Tumor node metastasis classification

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108. https://doi.org/10.3322/caac.21262

    Article  PubMed  Google Scholar 

  2. Hussain SP, Schwank J, Staib F, Wang XW, Harris CC (2007) TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene 26:2166–2176. https://doi.org/10.1038/sj.onc.1210279

    Article  CAS  PubMed  Google Scholar 

  3. Wang XW, Hussain SP, Huo TI, Wu CG, Forgues M, Hofseth LJ, Brechot C, Harris CC (2002) Molecular pathogenesis of human hepatocellular carcinoma. Toxicology 181–182:43–47. https://doi.org/10.1016/s0300-483x(02)00253-6

    Article  PubMed  Google Scholar 

  4. Matter MS, Decaens T, Andersen JB, Thorgeirsson SS (2014) Targeting the mTOR pathway in hepatocellular carcinoma: current state and future trends. J Hepatol 60:855–865. https://doi.org/10.1016/j.jhep.2013.11.031

    Article  CAS  PubMed  Google Scholar 

  5. Won C, Kim BH, Yi EH et al (2015) Signal transducer and activator of transcription 3-mediated CD133 up-regulation contributes to promotion of hepatocellular carcinoma. Hepatology 62:1160–1173. https://doi.org/10.1002/hep.27968

    Article  CAS  PubMed  Google Scholar 

  6. Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359:1350–1355. https://doi.org/10.1126/science.aar4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sun C, Mezzadra R, Schumacher TN (2018) Regulation and Function of the PD-L1 Checkpoint. Immunity 48:434–452. https://doi.org/10.1016/j.immuni.2018.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168:707–723. https://doi.org/10.1016/j.cell.2017.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Prestipino A, Zeiser R (2019) Clinical implications of tumor-intrinsic mechanisms regulating PD-L1. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aav4810

    Article  PubMed  Google Scholar 

  10. Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5:375–386. https://doi.org/10.1038/nri1604

    Article  CAS  PubMed  Google Scholar 

  11. Shin DS, Zaretsky JM, Escuin-Ordinas H et al (2017) Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov 7:188–201. https://doi.org/10.1158/2159-8290.CD-16-1223

    Article  CAS  PubMed  Google Scholar 

  12. Permata TBM, Hagiwara Y, Sato H, Yasuhara T, Oike T, Gondhowiardjo S, Held KD, Nakano T, Shibata A (2019) Base excision repair regulates PD-L1 expression in cancer cells. Oncogene 38:4452–4466. https://doi.org/10.1038/s41388-019-0733-6

    Article  CAS  PubMed  Google Scholar 

  13. Sato H, Niimi A, Yasuhara T et al (2017) DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat Commun 8:1751. https://doi.org/10.1038/s41467-017-01883-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sen T, Rodriguez BL, Chen L et al (2019) Targeting DNA damage response promotes antitumor immunity through STING-mediated T-cell activation in small cell lung cancer. Cancer Discov 9:646–661. https://doi.org/10.1158/2159-8290.CD-18-1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Garcia-Diaz A, Shin DS, Moreno BH et al (2017) Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep 19:1189–1201. https://doi.org/10.1016/j.celrep.2017.04.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shevtsov M, Sato H, Multhoff G, Shibata A (2019) Novel approaches to improve the efficacy of immuno-radiotherapy. Front Oncol 9:156. https://doi.org/10.3389/fonc.2019.00156

    Article  PubMed  PubMed Central  Google Scholar 

  17. Harada H, Fujita T, Miyamoto M, Kimura Y, Maruyama M, Furia A, Miyata T, Taniguchi T (1989) Structurally similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same regulatory elements of IFN and IFN-inducible genes. Cell 58:729–739. https://doi.org/10.1016/0092-8674(89)90107-4

    Article  CAS  PubMed  Google Scholar 

  18. Klune JR, Dhupar R, Kimura S et al (2012) Interferon regulatory factor-2 is protective against hepatic ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol 303:G666–G673. https://doi.org/10.1152/ajpgi.00050.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ueki S, Dhupar R, Cardinal J, Tsung A, Yoshida J, Ozaki KS, Klune JR, Murase N, Geller DA (2010) Critical role of interferon regulatory factor-1 in murine liver transplant ischemia reperfusion injury. Hepatology 51:1692–1701. https://doi.org/10.1002/hep.23501

    Article  CAS  PubMed  Google Scholar 

  20. Kim PK, Armstrong M, Liu Y, Yan P, Bucher B, Zuckerbraun BS, Gambotto A, Billiar TR, Yim JH (2004) IRF-1 expression induces apoptosis and inhibits tumor growth in mouse mammary cancer cells in vitro and in vivo. Oncogene 23:1125–1135. https://doi.org/10.1038/sj.onc.1207023

    Article  CAS  PubMed  Google Scholar 

  21. Yokota S, Yoshida O, Dou L et al (2015) IRF-1 promotes liver transplant ischemia/reperfusion injury via hepatocyte IL-15/IL-15Ralpha production. J Immunol 194:6045–6056. https://doi.org/10.4049/jimmunol.1402505

    Article  CAS  PubMed  Google Scholar 

  22. Li P, Du Q, Cao Z et al (2012) Interferon-gamma induces autophagy with growth inhibition and cell death in human hepatocellular carcinoma (HCC) cells through interferon-regulatory factor-1 (IRF-1). Cancer Lett 314:213–222. https://doi.org/10.1016/j.canlet.2011.09.031

    Article  CAS  PubMed  Google Scholar 

  23. Yang MQ, Du Q, Varley PR, Goswami J, Liang Z, Wang R, Li H, Stolz DB, Geller DA (2018) Interferon regulatory factor 1 priming of tumour-derived exosomes enhances the antitumour immune response. Br J Cancer 118:62–71. https://doi.org/10.1038/bjc.2017.389

    Article  CAS  PubMed  Google Scholar 

  24. Coelho MA, de Carne TS, Rana S et al (2017) Oncogenic RAS Signaling Promotes Tumor Immunoresistance by Stabilizing PD-L1 mRNA. Immunity 47(1083–99):e6. https://doi.org/10.1016/j.immuni.2017.11.016

    Article  CAS  Google Scholar 

  25. Cerami E, Gao J, Dogrusoz U et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404. https://doi.org/10.1158/2159-8290.CD-12-0095

    Article  PubMed  Google Scholar 

  26. Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. https://doi.org/10.1126/scisignal.2004088

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kroger A, Ortmann D, Krohne TU, Mohr L, Blum HE, Hauser H, Geissler M (2001) Growth suppression of the hepatocellular carcinoma cell line Hepa1-6 by an activatable interferon regulatory factor-1 in mice. Cancer Res 61:2609–2617

    CAS  PubMed  Google Scholar 

  28. Tamura T, Yanai H, Savitsky D, Taniguchi T (2008) The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol 26:535–584. https://doi.org/10.1146/annurev.immunol.26.021607.090400

    Article  CAS  PubMed  Google Scholar 

  29. Schwartz-Roberts JL, Cook KL, Chen C et al (2015) Interferon regulatory factor-1 signaling regulates the switch between autophagy and apoptosis to determine breast cancer cell fate. Cancer Res 75:1046–1055. https://doi.org/10.1158/0008-5472.CAN-14-1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shao L, Hou W, Scharping NE et al (2019) IRF1 Inhibits Antitumor Immunity through the Upregulation of PD-L1 in the Tumor Cell. Cancer Immunol Res 7:1258–1266. https://doi.org/10.1158/2326-6066.CIR-18-0711

    Article  PubMed  Google Scholar 

  31. Dorand RD, Nthale J, Myers JT et al (2016) Cdk5 disruption attenuates tumor PD-L1 expression and promotes antitumor immunity. Science 353:399–403. https://doi.org/10.1126/science.aae0477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liao W, Overman MJ, Boutin AT et al (2019) KRAS-IRF2 Axis Drives Immune Suppression and Immune Therapy Resistance in Colorectal Cancer. Cancer Cell 35(559–72):e7. https://doi.org/10.1016/j.ccell.2019.02.008

    Article  CAS  Google Scholar 

  33. Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi B, Varambally S (2017) UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 19:649–658. https://doi.org/10.1016/j.neo.2017.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Calderaro J, Rousseau B, Amaddeo G et al (2016) Programmed death ligand 1 expression in hepatocellular carcinoma: relationship With clinical and pathological features. Hepatology 64:2038–2046. https://doi.org/10.1002/hep.28710

    Article  CAS  PubMed  Google Scholar 

  35. Huang CY, Wang Y, Luo GY, Han F, Li YQ, Zhou ZG, Xu GL (2017) Relationship between PD-L1 expression and CD8+ T-cell immune responses in hepatocellular carcinoma. J Immunother 40:323–333. https://doi.org/10.1097/CJI.0000000000000187

    Article  CAS  PubMed  Google Scholar 

  36. Taube JM, Klein A, Brahmer JR et al (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 20:5064–5074. https://doi.org/10.1158/1078-0432.CCR-13-3271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tumeh PC, Harview CL, Yearley JH et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–571. https://doi.org/10.1038/nature13954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Solinas A, Calvisi DF (2016) Programmed death ligand 1 expression in hepatocellular carcinoma: a prognostic marker and therapeutic target for liver cancer? Hepatology 64:1847–1849. https://doi.org/10.1002/hep.28803

    Article  CAS  PubMed  Google Scholar 

  39. Gao Q, Wang XY, Qiu SJ et al (2009) Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res 15:971–979. https://doi.org/10.1158/1078-0432.CCR-08-1608

    Article  CAS  PubMed  Google Scholar 

  40. Smithy JW, Moore LM, Pelekanou V et al (2017) Nuclear IRF-1 expression as a mechanism to assess "Capability" to express PD-L1 and response to PD-1 therapy in metastatic melanoma. J Immunother Cancer 5:25. https://doi.org/10.1186/s40425-017-0229-2

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gupta S, McCann L, Chan YGY et al (2019) Closed system RT-qPCR as a potential companion diagnostic test for immunotherapy outcome in metastatic melanoma. J Immunother Cancer 7:254. https://doi.org/10.1186/s40425-019-0731-9

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

DAG was supported by funding from National Institute of Health (HHSN276201200017C and P30DK120531-01). YY was supported by funding from Guangxi Natural Science Foundation (2017GXNSFAA198014) and Guangxi High Education Institute Science Foundation (2017KY0099).

Author information

Authors and Affiliations

Authors

Contributions

YY and DAG designed the research. YY, LZ, QD, BY, and DAG performed research and also analyzed the data. YY and DAG wrote the paper. All authors edited and approved the submission of this work.

Corresponding authors

Correspondence to Yihe Yan or David A. Geller.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval and ethical standards

All individuals provided written informed consent and human tissues were obtained in accordance with the University of Pittsburgh Institutional Review Board (IRB) approved protocol (No. MOD08010372/PRO08010372).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 276 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Zheng, L., Du, Q. et al. Interferon regulatory factor 1 (IRF-1) and IRF-2 regulate PD-L1 expression in hepatocellular carcinoma (HCC) cells. Cancer Immunol Immunother 69, 1891–1903 (2020). https://doi.org/10.1007/s00262-020-02586-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02586-9

Keywords

Navigation