Skip to main content

Advertisement

Log in

Naturally occurring cancers in pet dogs as pre-clinical models for cancer immunotherapy

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Despite the significant progress in tumor prevention, early detection, diagnosis and treatment made over recent decades, cancer is still an enormous public health challenge all around the world, with the number of people affected increasing every year. A great deal of effort is therefore being devoted to the search for novel safe, effective and economically sustainable treatments for the growing population of neoplastic patients. One main obstacle to this process is the extremely low percentage of therapeutic approaches that, after successfully passing pre-clinical testing, actually demonstrate activity when finally tested in humans. This disappointing and expensive failure rate is partly due to the pre-clinical murine models used for in vivo testing, which cannot faithfully recapitulate the multifaceted nature and evolution of human malignancies. These features are better mirrored in natural disease models, i.e., companion animals affected by cancers. Herein, we discuss the relevance of spontaneous canine tumors for the evaluation of the safety and anti-tumor activity of novel therapeutic strategies before in-human trials, and present our experience in the development of a vaccine that targets chondroitin sulphate proteoglycan (CSPG)4 as an example of these comparative oncology studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BTK:

Bruton’s tyrosine kinase

CAR-T:

Genetically engineered T cells with chimeric antigen receptors

CSC:

Cancer stem cells

CIs:

Checkpoint inhibitors

CSPG4:

Chondroitin sulphate proteoglycan 4

COTC:

Comparative Oncology Trials Consortium

CTLA-4:

Cytotoxic T lymphocyte antigen-4

ECM:

Extracellular matrix

FAK:

Focal adhesion kinase

FDA:

Food and Drug Administration

IHC:

Immunohistochemical

L-MTP-PE:

Liposomal muramyl tripeptide phosphatidyl ethanolamine

MM:

Malignant melanoma

NCI:

National Cancer Institute

OSA:

Osteosarcoma

PDX:

Patients-derived xenograft

PAC-1:

Procaspase-activating compound-1

PD-1:

Programmed cell death receptor-1

TWT:

Triple wild type

USDA:

United States Department of Agriculture

WT:

Wild type

References

  1. Dragani TA, Castells A, Kulasingam V, Diamandis EP, Earl H, Iams WT, Lovly CM, Sedelaar JP, Schalken JA (2016) Major milestones in translational oncology. BMC Med 14:110. https://doi.org/10.1186/s12916-016-0654-y

    Article  PubMed  PubMed Central  Google Scholar 

  2. Barutello G, Rolih V, Arigoni M, Tarone L, Conti L, Quaglino E, Buracco P, Cavallo F, Riccardo F (2018) Strengths and weaknesses of pre-clinical models for human melanoma treatment: dawn of dogs’ revolution for immunotherapy. Int J Mol Sci. https://doi.org/10.3390/ijms19030799

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mak IW, Evaniew N, Ghert M (2014) Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res 6:114–118

    PubMed  PubMed Central  Google Scholar 

  4. Riccardo F, Aurisicchio L, Impellizeri JA, Cavallo F (2015) The importance of comparative oncology in translational medicine. Cancer Immunol Immunother CII 64:137–148. https://doi.org/10.1007/s00262-014-1645-5

    Article  CAS  PubMed  Google Scholar 

  5. Paoloni M, Khanna C (2008) Translation of new cancer treatments from pet dogs to humans. Nat Rev Cancer 8:147–156. https://doi.org/10.1038/nrc2273

    Article  CAS  PubMed  Google Scholar 

  6. Talmadge JE, Singh RK, Fidler IJ, Raz A (2007) Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am J Pathol 170:793–804. https://doi.org/10.2353/ajpath.2007.060929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gordon MY, Blackett NM (1976) The sensitivities of human and murine hemopoietic cells exposed to cytotoxic drugs in an in vivo culture. Cancer Res 36:2822–2826

    CAS  PubMed  Google Scholar 

  8. Honigberg LA, Smith AM, Sirisawad M et al (2010) The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci U S A. 107:13075–13080. https://doi.org/10.1073/pnas.1004594107

    Article  PubMed  PubMed Central  Google Scholar 

  9. Krogh A (1929) The progress of physiology. Science 70:200–204. https://doi.org/10.1126/science.70.1809.200

    Article  CAS  PubMed  Google Scholar 

  10. Lindblad-Toh K, Wade CM, Mikkelsen TS et al (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803–819. https://doi.org/10.1038/nature04338

    Article  CAS  PubMed  Google Scholar 

  11. Olson PN (2007) Using the canine genome to cure cancer and other diseases. Theriogenology 68:378–381. https://doi.org/10.1016/j.theriogenology.2007.04.016

    Article  CAS  PubMed  Google Scholar 

  12. Mueller F, Fuchs B, Kaser-Hotz B (2007) Comparative biology of human and canine osteosarcoma. Anticancer Res 27:155–164

    CAS  PubMed  Google Scholar 

  13. Gardner HL, Fenger JM, London CA (2016) Dogs as a model for cancer. Annu Rev Anim Biosci 4:199–222. https://doi.org/10.1146/annurev-animal-022114-110911

    Article  CAS  PubMed  Google Scholar 

  14. Medicine Io, National Academies of Sciences E, Medicine (2015) The role of clinical studies for pets with naturally occurring tumors in translational cancer research: workshop summary. The National Academies Press, Washington, DC

    Google Scholar 

  15. Abdelmegeed SM, Mohammed S (2018) Canine mammary tumors as a model for human disease. Oncol Lett 15:8195–8205. https://doi.org/10.3892/ol.2018.8411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fan TM, Selting KA (2018) Exploring the potential utility of pet dogs with cancer for studying radiation-induced immunogenic cell death strategies. Front Oncol 8:680. https://doi.org/10.3389/fonc.2018.00680

    Article  PubMed  Google Scholar 

  17. Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J (2014) Clinical development success rates for investigational drugs. Nat Biotechnol 32:40–51. https://doi.org/10.1038/nbt.2786

    Article  CAS  PubMed  Google Scholar 

  18. Barsoum N, Kleeman C (2002) Now and then, the history of parenteral fluid administration. Am J Nephrol 22:284–289. https://doi.org/10.1159/000063775

    Article  PubMed  Google Scholar 

  19. Murray JE, Sheil AG, Moseley R, Knight P, McGavic JD, Dammin GJ (1964) Analysis of mechanism of immunosuppressive drugs in renal homotransplantation. Ann Surg 160:449–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weiden PL, Storb R, Lerner KG, Kao GF, Graham TC, Thomas ED (1975) Treatment of canine malignancies by 1200 R total body irradiation and autologous marrow grafts. Exp Hematol 3:124–134

    CAS  PubMed  Google Scholar 

  21. Storb R, Tsoi MS, Weiden PL, Graham TC, Thomas ED (1976) Studies on the mechanism of stable graft-host tolerance in canine and human radiation chimeras. Transplant Proc 8:561–564

    CAS  PubMed  Google Scholar 

  22. Faivre S, Delbaldo C, Vera K et al (2006) Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol 24:25–35. https://doi.org/10.1200/JCO.2005.02.2194

    Article  CAS  PubMed  Google Scholar 

  23. London CA, Bernabe LF, Barnard S et al (2014) Preclinical evaluation of the novel, orally bioavailable selective inhibitor of nuclear export (SINE) KPT-335 in spontaneous canine cancer: results of a phase I study. PLoS ONE 9:e87585. https://doi.org/10.1371/journal.pone.0087585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Burger JA, Keating MJ, Wierda WG et al (2014) Safety and activity of ibrutinib plus rituximab for patients with high-risk chronic lymphocytic leukaemia: a single-arm, phase 2 study. Lancet Oncol 15:1090–1099. https://doi.org/10.1016/s1470-2045(14)70335-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vail DM, Thamm DH, Reiser H et al (2009) Assessment of GS-9219 in a pet dog model of non-Hodgkin’s lymphoma. Clin Cancer Res 15:3503–3510. https://doi.org/10.1158/1078-0432.CCR-08-3113

    Article  CAS  PubMed  Google Scholar 

  26. Reiser H, Wang J, Chong L et al (2008) GS-9219–a novel acyclic nucleotide analogue with potent antineoplastic activity in dogs with spontaneous non-Hodgkin’s lymphoma. Clin Cancer Res 14:2824–2832. https://doi.org/10.1158/1078-0432.CCR-07-2061

    Article  CAS  PubMed  Google Scholar 

  27. De Clercq E (2018) Tanovea(R) for the treatment of lymphoma in dogs. Biochem Pharmacol 154:265–269. https://doi.org/10.1016/j.bcp.2018.05.010

    Article  CAS  PubMed  Google Scholar 

  28. West DC, Qin Y, Peterson QP et al (2012) Differential effects of procaspase-3 activating compounds in the induction of cancer cell death. Mol Pharm 9:1425–1434. https://doi.org/10.1021/mp200673n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Peterson QP, Hsu DC, Novotny CJ, West DC, Kim D, Schmit JM, Dirikolu L, Hergenrother PJ, Fan TM (2010) Discovery and canine preclinical assessment of a nontoxic procaspase-3-activating compound. Cancer Res 70:7232–7241. https://doi.org/10.1158/0008-5472.CAN-10-0766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Joshi AD, Botham RC, Schlein LJ et al (2017) Synergistic and targeted therapy with a procaspase-3 activator and temozolomide extends survival in glioma rodent models and is feasible for the treatment of canine malignant glioma patients. Oncotarget. https://doi.org/10.18632/oncotarget.19085

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bergman PJ, Camps-Palau MA, McKnight JA et al (2006) Development of a xenogeneic DNA vaccine program for canine malignant melanoma at the animal medical center. Vaccine 24:4582–4585. https://doi.org/10.1016/j.vaccine.2005.08.027

    Article  CAS  PubMed  Google Scholar 

  32. Liao JC, Gregor P, Wolchok JD, Orlandi F, Craft D, Leung C, Houghton AN, Bergmann PJ (2006) Vaccination with human tyrosinase DNA induces antibody responses in dogs with advanced melanoma. Cancer Immun 6:21

    Google Scholar 

  33. Grosenbaugh DA, Leard AT, Bergman PJ et al (2011) Safety and efficacy of a xenogeneic DNA vaccine encoding for human tyrosinase as adjunctive treatment for oral malignant melanoma in dogs following surgical excision of the primary tumor. Am J Vet Res. https://doi.org/10.2460/ajvr.72.12.1631

    Article  PubMed  Google Scholar 

  34. Wolchok JD, Yuan J, Houghton AN et al (2007) Safety and immunogenicity of tyrosinase DNA vaccines in patients with melanoma. Molecular Ther J Am Soc Gene Ther 15:2044–2050. https://doi.org/10.1038/sj.mt.6300290

    Article  CAS  Google Scholar 

  35. Yuan J, Ku GY, Adamow M et al (2013) Immunologic responses to xenogeneic tyrosinase DNA vaccine administered by electroporation in patients with malignant melanoma. J Immunother Cancer. https://doi.org/10.1186/2051-1426-1-20

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ottnod JM, Smedley RC, Walshaw R, Hauptman JG, Kiupel M, Obradovich JE (2013) A retrospective analysis of the efficacy of Oncept vaccine for the adjunct treatment of canine oral malignant melanoma. Vet Comp Oncol 11:219–229. https://doi.org/10.1111/vco.12057

    Article  CAS  PubMed  Google Scholar 

  37. Treggiari E, Grant JP, North SM (2016) A retrospective review of outcome and survival following surgery and adjuvant xenogeneic DNA vaccination in 32 dogs with oral malignant melanoma. J Vet Med Sci 78:845–850. https://doi.org/10.1292/jvms.15-0510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Verganti S, Berlato D, Blackwood L, Amores-Fuster I, Polton GA, Elders R, Doyle R, Taylor A, Murphy S (2017) Use of Oncept melanoma vaccine in 69 canine oral malignant melanomas in the UK. J Small Anim Pract 58:10–16. https://doi.org/10.1111/jsap.12613

    Article  CAS  PubMed  Google Scholar 

  39. Piras LA, Riccardo F, Iussich S et al (2017) Prolongation of survival of dogs with oral malignant melanoma treated by en bloc surgical resection and adjuvant CSPG4-antigen electrovaccination. Vet Comp Oncol 15:996–1013. https://doi.org/10.1111/vco.12239

    Article  CAS  PubMed  Google Scholar 

  40. Riccardo F, Iussich S, Maniscalco L et al (2014) CSPG4-specific immunity and survival prolongation in dogs with oral malignant melanoma immunized with human CSPG4 DNA. Clin Cancer Res Off J Am Assoc Cancer Res 20:3753–3762. https://doi.org/10.1158/1078-0432.CCR-13-3042

    Article  CAS  Google Scholar 

  41. Kurzman ID, MacEwen EG, Rosenthal RC et al (1995) Adjuvant therapy for osteosarcoma in dogs—results of randomized clinical trials using combined liposome-encapsulated muramyl tripeptide and cisplatin. Clin Cancer Res 1:1595–1601

    CAS  PubMed  Google Scholar 

  42. Kleinerman ES, Gano JB, Johnston DA, Benjamin RS, Jaffe N (1995) Efficacy of liposomal muramyl tripeptide (CGP 19835A) in the treatment of relapsed osteosarcoma. Am J Clin Oncol 18:93–99

    Article  CAS  PubMed  Google Scholar 

  43. Kleinerman ES, Jia SF, Griffin J, Seibel NL, Benjamin RS, Jaffe N (1992) Phase II study of liposomal muramyl tripeptide in osteosarcoma: the cytokine cascade and monocyte activation following administration. J Clin Oncol 10:1310–1316

    Article  CAS  PubMed  Google Scholar 

  44. Creaven PJ, Cowens JW, Brenner DE et al (1990) Initial clinical trial of the macrophage activator MTP-PE encapsulated in liposomes in patients with advanced cancer. J Biol Resp Modifier 9:492–498

    CAS  Google Scholar 

  45. Pa M (2009) Muramyl tripeptide (mifamurtide) for the treatment of osteosarcoma. Expert Rev Anticancer Ther. https://doi.org/10.1586/era.09.69

    Article  Google Scholar 

  46. Biteau K, Guiho R, Chatelais M, Taurelle J, Chesneau J, Corradini N, Heymann D, Redini F (2016) L-MTP-PE and zoledronic acid combination in osteosarcoma- preclinical evidence of positive therapeutic combination for clinical transfer. Am J Cancer Res 6:677

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Mason NJ, Gnanandarajah JS, Engiles JB, Gray F, Laughlin D, Gaurnier-Hausser A, Wallecha A, Huebner M, Paterson Y (2016) Immunotherapy with a HER2-Targeting Listeria Induces HER2-Specific Immunity and Demonstrates Potential Therapeutic Effects in a Phase I Trial in Canine Osteosarcoma. Clin Cancer Res Off J Am Assoc Cancer Res 22:4380–4390. https://doi.org/10.1158/1078-0432.CCR-16-0088

    Article  CAS  Google Scholar 

  48. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30. https://doi.org/10.3322/caac.21442

    Article  PubMed  Google Scholar 

  49. Jenkins RW, Barbie DA, Flaherty KT (2018) Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer 118:9–16. https://doi.org/10.1038/bjc.2017.434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nishiya AT, Massoco CO, Felizzola CR et al (2016) Comparative Aspects of Canine Melanoma. Vet Sci. https://doi.org/10.3390/vetsci3010007

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bosenberg M, Arnheiter H, Kelsh R (2014) Melanoma in mankind’s best friend. Pigment Cell Melanoma Res 27:1. https://doi.org/10.1111/pcmr.12196

    Article  PubMed  Google Scholar 

  52. Mochizuki H, Kennedy K, Shapiro SG, Breen M (2015) BRAF mutations in canine cancers. PLoS ONE 10:e0129534. https://doi.org/10.1371/journal.pone.0129534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Taran SJ, Taran R, Malipatil NB (2017) Pediatric osteosarcoma: an updated review. Indian J Med Paediatr Oncol 38:33–43. https://doi.org/10.4103/0971-5851.203513

    Article  PubMed  PubMed Central  Google Scholar 

  54. Varshney J, Scott MC, Largaespada DA, Subramanian S (2016) Understanding the osteosarcoma pathobiology: a comparative oncology approach. Vet Sci. https://doi.org/10.3390/vetsci3010003

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fenger JM, London CA, Kisseberth WC (2014) Canine osteosarcoma: a naturally occurring disease to inform pediatric oncology. ILAR J 55:69–85. https://doi.org/10.1093/ilar/ilu009

    Article  CAS  PubMed  Google Scholar 

  56. Nicolosi PA, Dallatomasina A, Perris R (2015) Theranostic impact of NG2/CSPG4 proteoglycan in cancer. Theranostics 5:530–544. https://doi.org/10.7150/thno.10824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Benassi MS, Pazzaglia L, Chiechi A, Alberghini M, Conti A, Cattaruzza S, Wassermann B, Picci P, Perris R (2009) NG2 expression predicts the metastasis formation in soft-tissue sarcoma patients. J Orthop Res Off Publ Orthop Res Soc 27:135–140. https://doi.org/10.1002/jor.20694

    Article  Google Scholar 

  58. Wang X, Katayama A, Wang Y et al (2011) Functional characterization of an scFv-Fc antibody that immunotherapeutically targets the common cancer cell surface proteoglycan CSPG4. Cancer Res 71:7410–7422. https://doi.org/10.1158/0008-5472.CAN-10-1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Garusi E, Rossi S, Perris R (2012) Antithetic roles of proteoglycans in cancer. Cell Mol Life Sci CMLS 69:553–579. https://doi.org/10.1007/s00018-011-0816-1

    Article  CAS  PubMed  Google Scholar 

  60. Beard RE, Abate-Daga D, Rosati SF, Zheng Z, Wunderlich JR, Rosenberg SA, Morgan RA (2013) Gene expression profiling using nanostring digital RNA counting to identify potential target antigens for melanoma immunotherapy. Clinical Cancer Res Off J Am Assoc Cancer Res 19:4941–4950. https://doi.org/10.1158/1078-0432.CCR-13-1253

    Article  CAS  Google Scholar 

  61. Ziai MR, Imberti L, Nicotra MR, Badaracco G, Segatto O, Natali PG, Ferrone S (1987) Analysis with monoclonal antibodies of the molecular and cellular heterogeneity of human high molecular weight melanoma associated antigen. Cancer Res 47:2474–2480

    CAS  PubMed  Google Scholar 

  62. Rivera Z, Ferrone S, Wang X, Jube S, Yang H, Pass HI, Kanodia S, Gaudino G, Carbone M (2012) CSPG4 as a target of antibody-based immunotherapy for malignant mesothelioma. Clin Cancer Res Off J Am Assoc Cancer Res 18:5352–5363. https://doi.org/10.1158/1078-0432.CCR-12-0628

    Article  CAS  Google Scholar 

  63. Kozanoglu I, Boga C, Ozdogu H, Sozer O, Maytalman E, Yazici AC, Sahin FI (2009) Human bone marrow mesenchymal cells express NG2: possible increase in discriminative ability of flow cytometry during mesenchymal stromal cell identification. Cytotherapy 11:527–533. https://doi.org/10.1080/14653240902923153

    Article  CAS  PubMed  Google Scholar 

  64. Campoli M, Ferrone S, Wang X (2010) Functional and clinical relevance of chondroitin sulfate proteoglycan 4. Adv Cancer Res 109:73–121. https://doi.org/10.1016/B978-0-12-380890-5.00003-X

    Article  CAS  PubMed  Google Scholar 

  65. Cavallo F, De Giovanni C, Nanni P, Forni G, Lollini PL (2011) 2011: the immune hallmarks of cancer. Cancer Immunol Immunother 60:319–326. https://doi.org/10.1007/s00262-010-0968-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rolih V, Barutello G, Iussich S, De Maria R, Quaglino E, Buracco P, Cavallo F, Riccardo F (2017) CSPG4: a prototype oncoantigen for translational immunotherapy studies. J Transl Med 15:151. https://doi.org/10.1186/s12967-017-1250-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cattaruzza S, Ozerdem U, Denzel M et al (2013) Multivalent proteoglycan modulation of FGF mitogenic responses in perivascular cells. Angiogenesis 16:309–327. https://doi.org/10.1007/s10456-012-9316-7

    Article  CAS  PubMed  Google Scholar 

  68. Price MA, Colvin Wanshura LE, Yang J et al (2011) CSPG4, a potential therapeutic target, facilitates malignant progression of melanoma. Pigment Cell Melanoma Res 24:1148–1157. https://doi.org/10.1111/j.1755-148X.2011.00929.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Goretzki L, Lombardo CR, Stallcup WB (2000) Binding of the NG2 proteoglycan to kringle domains modulates the functional properties of angiostatin and plasmin(ogen). J Biol Chem 275:28625–28633. https://doi.org/10.1074/jbc.M002290200

    Article  CAS  PubMed  Google Scholar 

  70. Tamburini E, Dallatomasina A, Quartararo J, Cortelazzi B, Mangieri D, Lazzaretti M, Perris R (2019) Structural deciphering of the NG2/CSPG4 proteoglycan multifunctionality. FASEB J Off Publ Fed Am Soc Exp Biol 33:3112–3128. https://doi.org/10.1096/fj.201801670R

    Article  CAS  Google Scholar 

  71. Tamburini E, Dallatomasina A, Quartararo J, Cortelazzi B, Mangieri D, Lazzaretti M, Perris R (2018) Structural deciphering of the NG2/CSPG4 proteoglycan multifunctionality. FASEB J. fj201801670R. https://doi.org/10.1096/fj.201801670r

    Article  CAS  PubMed  Google Scholar 

  72. Campoli MR, Chang CC, Kageshita T, Wang X, McCarthy JB, Ferrone S (2004) Human high molecular weight-melanoma-associated antigen (HMW-MAA): a melanoma cell surface chondroitin sulfate proteoglycan (MSCP) with biological and clinical significance. Crit Rev Immunol 24:267–296

    Article  CAS  PubMed  Google Scholar 

  73. Cirenajwis H, Ekedahl H, Lauss M et al (2015) Molecular stratification of metastatic melanoma using gene expression profiling: prediction of survival outcome and benefit from molecular targeted therapy. Oncotarget 6:12297–12309. https://doi.org/10.18632/oncotarget.3655

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bogunovic D, O’Neill DW, Belitskaya-Levy I et al (2009) Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival. Proc Natl Acad Sci U S A 106:20429–20434. https://doi.org/10.1073/pnas.0905139106

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mayayo SL, Prestigio S, Maniscalco L et al (2011) Chondroitin sulfate proteoglycan-4: a biomarker and a potential immunotherapeutic target for canine malignant melanoma. Vet J 190:e26–e30. https://doi.org/10.1016/j.tvjl.2011.02.020

    Article  CAS  PubMed  Google Scholar 

  76. Riccardo F, Tarone L, Iussich S, Giacobino D, Arigoni M, Sammartano F, Morello E, Martano M, Gattino F, De Maria R, Ferrone S, Buracco P, Cavallo F (2019) Identification of CSPG4 as a promising target for translational combinatorial approaches in osteosarcoma. Ther Adv Med Oncol. https://doi.org/10.1177/1758835919855491

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ruiu R, Rolih V, Bolli E et al (2019) Fighting breast cancer stem cells through the immune-targeting of the xCT cystine-glutamate antiporter. Cancer Immunol Immunother CII 68:131–141. https://doi.org/10.1007/s00262-018-2185-1

    Article  CAS  PubMed  Google Scholar 

  78. Koren A, Rijavec M, Kern I, Sodja E, Korosec P, Cufer T (2016) BMI1, ALDH1A1, and CD133 transcripts connect epithelial-mesenchymal transition to cancer stem cells in lung carcinoma. Stem Cells Int 2016:9714315. https://doi.org/10.1155/2016/9714315

    Article  CAS  PubMed  Google Scholar 

  79. Rivera Z, Ferrone S, Wang X, Jube S, Yang H, Pass HI, Kanodia S, Gaudino G, Carbone M (2012) CSPG4 as a target of antibody-based immunotherapy for malignant mesothelioma. Clin Cancer Res 18:5352–5363. https://doi.org/10.1158/1078-0432.Ccr-12-0628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Conti L, Lanzardo S, Arigoni M, Antonazzo R, Radaelli E, Cantarella D, Calogero RA, Cavallo F (2013) The noninflammatory role of high mobility group box 1/Toll-like receptor 2 axis in the self-renewal of mammary cancer stem cells. FASEB J Off Publ Fed Am Soc Exp Biol 27:4731–4744. https://doi.org/10.1096/fj.13-230201

    Article  CAS  Google Scholar 

  81. Wang X, Osada T, Wang Y et al (2010) CSPG4 protein as a new target for the antibody-based immunotherapy of triple-negative breast cancer. J Natl Cancer Inst 102:1496–1512. https://doi.org/10.1093/jnci/djq343

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wang Y, Geldres C, Ferrone S, Dotti G (2015) Chondroitin sulfate proteoglycan 4 as a target for chimeric antigen receptor-based T-cell immunotherapy of solid tumors. Expert Opin Ther Targets 19:1339–1350. https://doi.org/10.1517/14728222.2015.1068759

    Article  CAS  PubMed  Google Scholar 

  83. Mittelman A, Chen GZ, Wong GY, Liu C, Hirai S, Ferrone S (1995) Human high molecular weight-melanoma associated antigen mimicry by mouse anti-idiotypic monoclonal antibody MK2-23: modulation of the immunogenicity in patients with malignant melanoma. Clinical Cancer Res Off J Am Assoc Cancer Res 1:705–713

    CAS  Google Scholar 

  84. Wang X, Ko EC, Peng L, Gillies SD, Ferrone S (2005) Human high molecular weight melanoma-associated antigen mimicry by mouse anti-idiotypic monoclonal antibody MK2-23: enhancement of immunogenicity of anti-idiotypic monoclonal antibody MK2-23 by fusion with interleukin 2. Cancer Res 65:6976–6983. https://doi.org/10.1158/0008-5472.CAN-04-2328

    Article  CAS  PubMed  Google Scholar 

  85. Quaglino E, Riccardo F, Macagno M, Bandini S, Cojoca R, Ercole E, Amici A, Cavallo F (2011) Chimeric DNA vaccines against ErbB2 + carcinomas: from mice to humans. Cancers 3:3225–3241. https://doi.org/10.3390/cancers3033225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Aurisicchio L, Mancini R, Ciliberto G (2013) Cancer vaccination by electro-gene-transfer. Expert Rev Vaccines 12:1127–1137. https://doi.org/10.1586/14760584.2013.836903

    Article  CAS  PubMed  Google Scholar 

  87. Impellizeri JA, Gavazza A, Greissworth E, Crispo A, Montella M, Ciliberto G, Lubas G, Aurisicchio L (2018) Tel-eVax: a genetic vaccine targeting telomerase for treatment of canine lymphoma. J Transl Med 16:349. https://doi.org/10.1186/s12967-018-1738-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gavazza A, Lubas G, Fridman A et al (2013) Safety and efficacy of a genetic vaccine targeting telomerase plus chemotherapy for the therapy of canine B-cell lymphoma. Human Gene Ther 24:728–738. https://doi.org/10.1089/hum.2013.112

    Article  CAS  Google Scholar 

  89. Peruzzi D, Gavazza A, Mesiti G et al (2010) A vaccine targeting telomerase enhances survival of dogs affected by B-cell lymphoma. Mol Ther J Am Soc Gene Ther 18:1559–1567. https://doi.org/10.1038/mt.2010.104

    Article  CAS  Google Scholar 

  90. Marconato L, Stefanello D, Sabattini S et al (2015) Enhanced therapeutic effect of APAVAC immunotherapy in combination with dose-intense chemotherapy in dogs with advanced indolent B-cell lymphoma. Vaccine 33:5080–5086. https://doi.org/10.1016/j.vaccine.2015.08.017

    Article  CAS  PubMed  Google Scholar 

  91. Milevoj N, Tratar UL, Nemec A, Brozic A, Znidar K, Sersa G, Cemazar M, Tozon N (2019) A combination of electrochemotherapy, gene electrotransfer of plasmid encoding canine IL-12 and cytoreductive surgery in the treatment of canine oral malignant melanoma. Res Vet Sci 122:40–49. https://doi.org/10.1016/j.rvsc.2018.11.001

    Article  CAS  PubMed  Google Scholar 

  92. Kurupati RK, Zhou X, Xiang Z, Keller LH, Ertl HCJ (2018) Safety and immunogenicity of a potential checkpoint blockade vaccine for canine melanoma. Cancer Immunol Immunother CII 67:1533–1544. https://doi.org/10.1007/s00262-018-2201-5

    Article  PubMed  Google Scholar 

  93. Finocchiaro LM, Fondello C, Gil-Cardeza ML, Rossi UA, Villaverde MS, Riveros MD, Glikin GC (2015) Cytokine-enhanced vaccine and interferon-beta plus suicide gene therapy as surgery adjuvant treatments for spontaneous canine melanoma. Human Gene Ther 26:367–376. https://doi.org/10.1089/hum.2014.130

    Article  CAS  Google Scholar 

  94. Riccardo F, Bolli E, Macagno M, Arigoni M, Cavallo F, Quaglino E (2017) Chimeric DNA vaccines: an effective way to overcome immune tolerance. Curr Top Microbiol Immunol 405:99–122. https://doi.org/10.1007/82_2014_426

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Monoclonal antibodies directed towards different epitopes of the CSPG4 antigen (225.2, TP32, TP49 and VF20-VT87.41) used to perform flow cytometry analysis were kindly provided by Prof. Soldano Ferrone (Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA). We thank Dr. Dale Lawson for his revision and editing of the manuscript.

Funding

This work was supported by Grants from Fondazione Ricerca Molinette Onlus, the University of Turin (ex 60% 2018, intramural funds) and the Italian Ministry of Health (Progetti ordinari di Ricerca Finalizzata, RF-2013-02359216). FR was supported by a fellowship from Fondazione Italiana per la Ricerca sul Cancro (FIRC).

Author information

Authors and Affiliations

Authors

Contributions

LT, GB, SI, DG and FR produced the results discussed in this review. FR, LT and GB performed mouse experiments and flow cytometry analysis, supervised by FC. SI and DG, under the supervision of PB, collaborated to produce the results in canine patients. FC, FR and LT provided major contributions in writing and discussing the manuscript. FC and EQ critically revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Federica Cavallo.

Ethics declarations

Conflict of interest

The authors declare that no potential conflicts of interest exist.

Ethical approval and ethical standards

All the in vivo experiments were approved by the Italian Ministry of Health, authorization numbers 0006939-P-18/03/2015 (164/2015-PR) and 0004230-20/02/2018-DGSAF-MDS-P.

Animal source

Mice used for the vaccination experiments reported in this paper were purchased from Charles River Laboratories or bred at the Molecular Biotechnology Center, University of Turin, where all mice were maintained and treated in accordance with University Ethical Committee and European Union guidelines under Directive 2010/63. The canine patients that were enrolled in veterinary trials were client-owned dogs, whose institutes of reference were the Veterinary Teaching Hospital of the University of Turin and the Veterinary clinics of South Rome, Italy. Dogs were treated according to the Good Clinical Practice guidelines for animal clinical studies, and rules imposed by the Ethical Committee of the University of Turin (Italy).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarone, L., Barutello, G., Iussich, S. et al. Naturally occurring cancers in pet dogs as pre-clinical models for cancer immunotherapy. Cancer Immunol Immunother 68, 1839–1853 (2019). https://doi.org/10.1007/s00262-019-02360-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-019-02360-6

Keywords

Navigation