Skip to main content

Advertisement

Log in

Neutrophil elastase enhances antigen presentation by upregulating human leukocyte antigen class I expression on tumor cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Neutrophil elastase (NE) is an innate immune cell-derived inflammatory mediator that we have shown increases the presentation of tumor-associated peptide antigens in breast cancer. In this study, we extend these observations to show that NE uptake has a broad effect on enhancing antigen presentation by breast cancer cells. We show that NE increases human leukocyte antigen (HLA) class I expression on the surface of breast cancer cells in a concentration and time-dependent manner. HLA class I upregulation requires internalization of enzymatically active NE. Western blots of NE-treated breast cancer cells confirm that the expression of total HLA class I as well as the antigen-processing machinery proteins TAP1, LMP2, and calnexin does not change following NE treatment. This suggests that NE does not increase the efficiency of antigen processing; rather, it mediates the upregulation of HLA class I by stabilizing and reducing membrane recycling of HLA class I molecules. Furthermore, the effects of NE extend beyond breast cancer since the uptake of NE by EBV–LCL increases the presentation of HLA class I-restricted viral peptides, as shown by their increased sensitivity to lysis by EBV-specific CD8+ T cells. Together, our results show that NE uptake increases the responsiveness of breast cancer cells to adaptive immunity by broad upregulation of membrane HLA class I and support the conclusion that the innate inflammatory mediator NE enhances tumor cell recognition and increases tumor sensitivity to the host adaptive immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APM:

Antigen-processing machinery

CCNE:

Cyclin E

CPZ:

Chlorpromazine

CTLs:

Cytotoxic T lymphocytes

DC:

Dendritic cell

DMEM:

Dulbecco’s modified Eagle’s Medium

EBV:

Epstein–Barr virus

ER:

Endoplasmic reticulum

FBS:

Fetal bovine serum

HLA:

Human leukocyte antigen

IFN:

Interferon

LCLs:

Lymphoblastoid cell lines

LMW:

Low molecular weight

NE:

Neutrophil elastase

PBMCs:

Peripheral blood mononuclear cells

PE:

Phycoerythrin

PMSF:

Phenylmethanesulfonyl fluoride

TAA:

Tumor-associated antigen

TAMs:

Tumor-associated macrophages

TANs:

Tumor-associated neutrophils

TNF:

Tumor necrosis factor

References

  1. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16:183–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Eruslanov EB, Bhojnagarwala PS, Quatromoni JG et al (2014) Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer. J Clin Invest 124:5466–5480

    Article  PubMed  PubMed Central  Google Scholar 

  3. Queen MM, Ryan RE, Holzer RG, Keller-Peck CR, Jorcyk CL (2005) Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Res 65:8896–8904

    Article  CAS  PubMed  Google Scholar 

  4. Jensen HK, Donskov F, Marcussen N, Nordsmark M, Lundbeck F, von der Maase H (2009) Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma. J Clin Oncol 27:4709–4717

    Article  PubMed  Google Scholar 

  5. Houghton AM, Rzymkiewicz DM, Ji H et al (2010) Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat Med 16:219–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Foekens JA, Ries C, Look MP, Gippner-Steppert C, Klijn JG, Jochum M (2003) The prognostic value of polymorphonuclear leukocyte elastase in patients with primary breast cancer. Cancer Res 63:337–341

    CAS  PubMed  Google Scholar 

  7. Mittendorf EA, Alatrash G, Qiao N et al (2012) Breast cancer cell uptake of the inflammatory mediator neutrophil elastase triggers an anticancer adaptive immune response. Cancer Res 72:3153–3162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alatrash G, Mittendorf EA, Sergeeva A et al (2012) Broad cross-presentation of the hematopoietically derived PR1 antigen on solid tumors leads to susceptibility to PR1-targeted immunotherapy. J Immunol 189:5476–5484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van Pelt LJ, Huisman MV, Weening RS, von dem Borne AE, Roos D, van Oers RH (1996) A single dose of granulocyte-macrophage colony-stimulating factor induces systemic interleukin-8 release and neutrophil activation in healthy volunteers. Blood 87:5305–5313

    PubMed  Google Scholar 

  10. van der Poll T, Jansen PM, Van Zee KJ et al (1996) Tumor necrosis factor-alpha induces activation of coagulation and fibrinolysis in baboons through an exclusive effect on the p55 receptor. Blood 88:922–927

    PubMed  Google Scholar 

  11. Sun Z, Yang P (2004) Role of imbalance between neutrophil elastase and alpha 1-antitrypsin in cancer development and progression. Lancet Oncol 5:182–190

    Article  CAS  PubMed  Google Scholar 

  12. Molldrem JJ, Lee PP, Wang C, Felio K, Kantarjian HM, Champlin RE, Davis MM (2000) Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med 6:1018–1023

    Article  CAS  PubMed  Google Scholar 

  13. Alatrash G, Ono Y, Sergeeva A et al (2012) The role of antigen cross-presentation from leukemia blasts on immunity to the leukemia-associated antigen PR1. J Immunother 35:309–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Keyomarsi K, Tucker SL, Buchholz TA et al (2002) Cyclin E and survival in patients with breast cancer. N Engl J Med 347:1566–1575

    Article  CAS  PubMed  Google Scholar 

  15. Desmedt C, Ouriaghli FE, Durbecq V et al (2006) Impact of cyclins E, neutrophil elastase and proteinase 3 expression levels on clinical outcome in primary breast cancer patients. Int J Cancer 119:2539–2545

    Article  CAS  PubMed  Google Scholar 

  16. Molldrem J, Dermime S, Parker K, Jiang YZ, Mavroudis D, Hensel N, Fukushima P, Barrett AJ (1996) Targeted T-cell therapy for human leukemia: cytotoxic T lymphocytes specific for a peptide derived from proteinase 3 preferentially lyse human myeloid leukemia cells. Blood 88:2450–2457

    CAS  PubMed  Google Scholar 

  17. Smith CA, Ng CY, Heslop HE et al (1995) Production of genetically modified Epstein-Barr virus-specific cytotoxic T cells for adoptive transfer to patients at high risk of EBV-associated lymphoproliferative disease. J Hematother 4:73–79

    Article  CAS  PubMed  Google Scholar 

  18. Mittendorf EA, Storrer CE, Shriver CD, Ponniah S, Peoples GE (2005) Evaluation of the CD107 cytotoxicity assay for the detection of cytolytic CD8+ cells recognizing HER2/neu vaccine peptides. Breast Cancer Res Treat 92:85–93

    Article  CAS  PubMed  Google Scholar 

  19. Mittendorf EA, Holmes JP, Ponniah S, Peoples GE (2008) The E75 HER2/neu peptide vaccine. Cancer Immunol Immunother 57:1511–1521

    Article  CAS  PubMed  Google Scholar 

  20. Propper DJ, Chao D, Braybrooke JP et al (2003) Low-dose IFN-gamma induces tumor MHC expression in metastatic malignant melanoma. Clin Cancer Res 9:84–92

    CAS  PubMed  Google Scholar 

  21. Wada Y, Yoshida K, Tsutani Y et al (2007) Neutrophil elastase induces cell proliferation and migration by the release of TGF-alpha, PDGF and VEGF in esophageal cell lines. Oncol Rep 17:161–167

    CAS  PubMed  Google Scholar 

  22. Gregory AD, Hale P, Perlmutter DH, Houghton AM (2012) Clathrin pit-mediated endocytosis of neutrophil elastase and cathepsin G by cancer cells. J Biol Chem 287:35341–35350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Su H, Liu B, Frohlich O, Ma H, Sands JM, Chen G (2013) Small GTPase Rab14 down-regulates UT-A1 urea transport activity through enhanced clathrin-dependent endocytosis. FASEB J 27:4100–4107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang LH, Rothberg KG, Anderson RG (1993) Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol 123:1107–1117

    Article  CAS  PubMed  Google Scholar 

  25. Ying QL, Simon SR (1993) Kinetics of the inhibition of human leukocyte elastase by elafin, a 6-kilodalton elastase-specific inhibitor from human skin. Biochemistry 32:1866–1874

    Article  CAS  PubMed  Google Scholar 

  26. Mark DE, Lazzari KG, Simons ER (1988) Are serine proteases involved in immune complex activation of neutrophils? J Leukoc Biol 44:441–447

    CAS  PubMed  Google Scholar 

  27. Heemels MT, Ploegh H (1995) Generation, translocation, and presentation of MHC class I-restricted peptides. Annu Rev Biochem 64:463–491

    Article  CAS  PubMed  Google Scholar 

  28. Leone P, Shin EC, Perosa F, Vacca A, Dammacco F, Racanelli V (2013) MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J Natl Cancer Inst 105:1172–1187

    Article  CAS  PubMed  Google Scholar 

  29. Giorda E, Sibilio L, Martayan A et al (2003) The antigen processing machinery of class I human leukocyte antigens: linked patterns of gene expression in neoplastic cells. Cancer Res 63:4119–4127

    CAS  PubMed  Google Scholar 

  30. Krishnakumar S, Abhyankar D, Sundaram AL, Pushparaj V, Shanmugam MP, Biswas J (2003) Major histocompatibility antigens and antigen-processing molecules in uveal melanoma. Clin Cancer Res 9:4159–4164

    CAS  PubMed  Google Scholar 

  31. Campoli M, Chang CC, Ferrone S (2002) HLA class I antigen loss, tumor immune escape and immune selection. Vaccine 20(Suppl 4):A40–A45

    Article  CAS  PubMed  Google Scholar 

  32. Delp K, Momburg F, Hilmes C, Huber C, Seliger B (2000) Functional deficiencies of components of the MHC class I antigen pathway in human tumors of epithelial origin. Bone Marrow Transplant 25(Suppl 2):S88–S95

    Article  PubMed  Google Scholar 

  33. Ogino T, Shigyo H, Ishii H, Katayama A, Miyokawa N, Harabuchi Y, Ferrone S (2006) HLA class I antigen down-regulation in primary laryngeal squamous cell carcinoma lesions as a poor prognostic marker. Cancer Res 66:9281–9289

    Article  CAS  PubMed  Google Scholar 

  34. Seliger B, Maeurer MJ, Ferrone S (2000) Antigen-processing machinery breakdown and tumor growth. Immunol Today 21:455–464

    Article  CAS  PubMed  Google Scholar 

  35. Garrido F, Cabrera T, Aptsiauri N (2010) “Hard” and “soft” lesions underlying the HLA class I alterations in cancer cells: implications for immunotherapy. Int J Cancer 127:249–256

    CAS  PubMed  Google Scholar 

  36. Seliger B, Hammers S, Hohne A, Zeidler R, Knuth A, Gerharz CD, Huber C (1997) IFN-gamma-mediated coordinated transcriptional regulation of the human TAP-1 and LMP-2 genes in human renal cell carcinoma. Clin Cancer Res 3:573–578

    CAS  PubMed  Google Scholar 

  37. Yang I, Kremen TJ, Giovannone AJ, Paik E, Odesa SK, Prins RM, Liau LM (2004) Modulation of major histocompatibility complex Class I molecules and major histocompatibility complex-bound immunogenic peptides induced by interferon-alpha and interferon-gamma treatment of human glioblastoma multiforme. J Neurosurg 100:310–319

    Article  CAS  PubMed  Google Scholar 

  38. Dunn IS, Haggerty TJ, Kono M, Durda PJ, Butera D, Macdonald DB, Benson EM, Rose LB, Kurnick JT (2007) Enhancement of human melanoma antigen expression by IFN-beta. J Immunol 179:2134–2142

    Article  CAS  PubMed  Google Scholar 

  39. van der Burg SH, Visseren MJ, Brandt RM, Kast WM, Melief CJ (1996) Immunogenicity of peptides bound to MHC class I molecules depends on the MHC-peptide complex stability. J Immunol 156:3308–3314

    PubMed  Google Scholar 

  40. Busch DH, Pamer EG (1998) MHC class I/peptide stability: implications for immunodominance, in vitro proliferation, and diversity of responding CTL. J Immunol 160:4441–4448

    CAS  PubMed  Google Scholar 

  41. Harndahl M, Rasmussen M, Roder G, Dalgaard Pedersen I, Sorensen M, Nielsen M, Buus S (2012) Peptide-MHC class I stability is a better predictor than peptide affinity of CTL immunogenicity. Eur J Immunol 42:1405–1416

    Article  CAS  PubMed  Google Scholar 

  42. Ghiringhelli F, Apetoh L, Tesniere A et al (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 15:1170–1178

    Article  CAS  PubMed  Google Scholar 

  43. Mittendorf EA, Sharma P (2010) Mechanisms of T-cell inhibition: implications for cancer immunotherapy. Expert Rev Vaccines 9:89–105

    Article  CAS  PubMed  Google Scholar 

  44. Krummel MF, Allison JP (1995) CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 182:459–465

    Article  CAS  PubMed  Google Scholar 

  45. Ishida Y, Agata Y, Shibahara K, Honjo T (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11:3887–3895

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chawla A, Philips AV, Qiao N, Sukhumalchandra P, Kerros C, Molldrem J, Alatrash G, Mittendorf EA (2014) Neutrophil elastase uptake by breast cancer increases anti-tumor adaptive immune response by upregulation of HLA class I molecules. [Abstract P21] Ann Surg Oncol 21:S51

    Article  Google Scholar 

  47. Chawla A, Philips AV, Qiao N, Sukhumalchandra P, Kerros C, Alatrash G, Molldrem JJ, Mittendorf EA (2014) Neutrophil elastase enhances adaptive immunity via increase of peptide presentation and downregulation of T cell inhibitory molecules [Abstract 4843/11] In: Proceedings of the 105th annual meeting of the American Association for Cancer Research, 2014 Apr 5–9, San Diego, CA. Philadelphia (PA): AACR

Download references

Acknowledgments

This work was supported by Grant R00CA133244 from the National Cancer Institute (NCI) (to Elizabeth A. Mittendorf), Leukemia SPORE CA100632 (to Jeffrey J. Molldrem), NCI P01 CA148600-01 (to Jeffrey J. Molldrem), Leukemia and Lymphoma Society Research Grant #6030-12 (to Jeffrey J. Molldrem), the T32 CA009599 training grant (to Akhil Chawla and Victor Gall) and the T32 CA009598 training grant (to Celine Kerros and Haley L. Peters) from the NCI. The Flow Cytometry and Cellular Imaging core were supported by Cancer Center Support Grant NCI #CA16672. STR DNA fingerprinting was done by the Cancer Center Support Grant funded Characterized Cell Line core, NCI #CA16672. Elizabeth A. Mittendorf is an R. Lee Clark Fellow of the University of Texas MD Anderson Cancer Center supported by the Jeanne F. Shelby Scholarship Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gheath Alatrash or Elizabeth A. Mittendorf.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Gheath Alatrash and Elizabeth A. Mittendorf have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 458 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chawla, A., Alatrash, G., Philips, A.V. et al. Neutrophil elastase enhances antigen presentation by upregulating human leukocyte antigen class I expression on tumor cells. Cancer Immunol Immunother 65, 741–751 (2016). https://doi.org/10.1007/s00262-016-1841-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-016-1841-6

Keywords

Navigation