Skip to main content

Advertisement

Log in

Cholesterol metabolites and tumor microenvironment: the road towards clinical translation

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Targeting the tumor microenvironment focusing on immune cells has recently become a standard of care for some tumors. Indeed, antibodies blocking immune checkpoints (e.g., anti-CTLA-4 and anti-PD1 mAbs) have been approved by regulatory agencies for the treatment of some solid tumors based upon successes in many clinical trials. Although tumor metabolism has always attracted the attention of tumor biologists, only recently have oncologists renewed their interest in this field of tumor biology research. This has highlighted the possibility to pharmacologically target rate-limiting enzymes along key metabolic pathways of tumor cells, such as lipogenesis and aerobic glycolysis. Altered tumor metabolism has also been shown to influence the functionality of the tumor microenvironment as a whole, particularly the immune cell component of thereof. Cholesterol, oxysterols and Liver X receptors (LXRs) have been investigated in different tumor models. Recent in vitro and in vivo results point to their involvement in tumor and immune cell biology, thus making the LXR/oxysterol axis a possible target for novel antitumor strategies. Indeed, the possibility to target both tumor cell metabolism (i.e., cholesterol metabolism) and tumor-infiltrating immune cell dysfunctions induced by oxysterols might result in a synergistic antitumor effect generating long-lasting memory responses. This review will focus on the role of cholesterol metabolism with particular emphasis on the role of the LXR/oxysterol axis in the tumor microenvironment, discussing mechanisms of action, pros and cons, and strategies to develop antitumor therapies based on the modulation of this axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

AIM/SPα:

Apoptosis inhibitor of macrophages

BRAF:

BRAF proto-oncogene, serine/threonine kinase

CCR:

Chemokine receptor

CTLA-4:

Cytotoxic T lymphocyte-associated protein 4

CXCR:

CXC chemokine receptor

DC:

Dendritic cell

ER:

Endoplasmic reticulum

HDL:

High-density lipoprotein

HMGCR:

Hydroxyl-methyl glutaryl-coenzyme A reductase

INSIG:

Insulin-induced gene

LDL:

Low-density lipoprotein

LDLR:

Low-density lipoprotein receptor

LXR:

Liver X receptor

mTOR:

Mammalian target of rapamycin

PD1:

Programmed cell death protein 1

RCT:

Reverse cholesterol transport

SCAP:

SREBP-cleavage activation protein

SREBP:

Sterol response element binding protein

SULT2B1b:

Sulfotransferase 2B1b

Th:

T helper cell

References

  1. Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27:450–461. doi:10.1016/j.ccell.2015.03.00

    Article  PubMed  CAS  Google Scholar 

  2. Postow MA, Callahan MK, Wolchok JD (2015) Immune checkpoint blockade in cancer therapy. J Clin Oncol 33:1974–1982. doi:10.1200/JCO.2014.59.4358

    Article  PubMed  CAS  Google Scholar 

  3. Sun Y (2015) Translational horizons in the tumor microenvironment: harnessing breakthroughs and targeting cures. Med Res Rev 35:408–436. doi:10.1002/med.21338

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sullivan RJ, Flaherty K (2012) MAP kinase signaling and inhibition in melanoma. Oncogene 32:2373–2379. doi:10.1038/onc.2012.345

    Article  PubMed  CAS  Google Scholar 

  5. Sharma P, Wagner K, Wolchok JD, Allison JP (2011) Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nat Rev Cancer 11:805–812. doi:10.1038/nrc3153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Shin DS, Ribas A (2015) The evolution of checkpoint blockade as a cancer therapy: what’s here, what’s next? Curr Opin Immunol 33:23–35. doi:10.1016/j.coi.2015.01.006

    Article  PubMed  CAS  Google Scholar 

  7. DeBerardinis RJ, Thompson CB (2012) Cellular metabolism and disease: what do metabolic outliers teach us? Cell 148:1132–1144. doi:10.1016/j.cell.2012.02.032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Villalba M, Rathore MG, Lopez-Royuela N, Krzywinska E, Garaude J, Allende-Vega N (2013) From tumor cell metabolism to tumor immune escape. Int J Biochem Cell Biol 45:106–113. doi:10.1016/j.biocel.2012.04.024

    Article  PubMed  CAS  Google Scholar 

  9. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95. doi:10.1038/nrc2981

    Article  PubMed  CAS  Google Scholar 

  10. Ghesquiere B, Wong BW, Kuchnio A, Carmeliet P (2014) Metabolism of stromal and immune cells in health and disease. Nature 511:167–176. doi:10.1038/nature13312

    Article  PubMed  CAS  Google Scholar 

  11. Warburg O (1956) On respiratory impairment in cancer cells. Science 124:269–270

    PubMed  CAS  Google Scholar 

  12. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033. doi:10.1126/science.1160809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Elstrom RL, Bauer DE, Buzzai M et al (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64:3892–3899

    Article  PubMed  CAS  Google Scholar 

  14. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35. doi:10.1038/nrm3025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7:763–777

    Article  PubMed  CAS  Google Scholar 

  16. Rysman E, Brusselmans K, Scheys K et al (2010) De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res 70:8117–8126

    Article  PubMed  CAS  Google Scholar 

  17. Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27:5497–5510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Repa JJ, Mangelsdorf DJ (2000) The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annu Rev Cell Dev Biol 16:459–481

    Article  PubMed  CAS  Google Scholar 

  19. Chang CH, Qiu J, O’Sullivan D et al (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162:1229–1241

    Article  PubMed  CAS  Google Scholar 

  20. Ho PC, Bihuniak JD, Macintyre AN et al (2015) Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162:1217–1228

    Article  PubMed  CAS  Google Scholar 

  21. Colegio OR, Chu NQ, Szabo AL et al (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513:559–563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Herber DL, Cao W, Nefedova Y et al (2010) Lipid accumulation and dendritic cell dysfunction in cancer. Nat Med 16:880–886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Cubillos-Ruiz JR, Silberman PC, Rutkowski MR et al (2015) ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell 161:1527–1538

    Article  PubMed  CAS  Google Scholar 

  24. Horton JD, Goldstein JL, Brown MS (2002) SREBPs: transcriptional mediators of lipid homeostasis. Cold Spring Harb Symp Quant Biol 67:491–498

    Article  PubMed  CAS  Google Scholar 

  25. Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS, Goldstein JL (2003) Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci USA 100:12027–12032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Goldstein JL, Brown MS (2015) A century of cholesterol and coronaries: from plaques to genes to statins. Cell 161:161–172

    Article  PubMed  CAS  Google Scholar 

  27. Bovenga F, Sabba C, Moschetta A (2015) Uncoupling nuclear receptor LXR and cholesterol metabolism in cancer. Cell Metab 21:517–526

    Article  PubMed  CAS  Google Scholar 

  28. Wang LJ, Song BL (2012) Niemann–Pick C1-Like 1 and cholesterol uptake. Biochim Biophys Acta 1821:964–972. doi:10.1016/j.bbalip.2012.03.004

    Article  PubMed  CAS  Google Scholar 

  29. Phillips MC (2014) Molecular mechanisms of cellular cholesterol efflux. J Biol Chem 289:24020–24029. doi:10.1074/jbc.R114.583658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Repa JJ, Mangelsdorf DJ (2002) The liver X receptor gene team: potential new players in atherosclerosis. Nat Med 8:1243–1248

    Article  PubMed  CAS  Google Scholar 

  31. Spann NJ, Garmire LX, McDonald JG et al (2012) Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 151:138–152. doi:10.1016/j.cell.2012.06.054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ (1996) An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature 383:728–731

    Article  PubMed  CAS  Google Scholar 

  33. Bjorkhem I (2002) Do oxysterols control cholesterol homeostasis? J Clin Invesig. 110:725–730

    Article  CAS  Google Scholar 

  34. Murphy RC, Johnson KM (2008) Cholesterol, reactive oxygen species, and the formation of biologically active mediators. J Biol Chem 283:15521–15525. doi:10.1074/jbc.R700049200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Chen W, Chen G, Head DL, Mangelsdorf DJ, Russell DW (2007) Enzymatic reduction of oxysterols impairs LXR signaling in cultured cells and the livers of mice. Cell Metab 5:73–79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Jakobsson T, Treuter E, Gustafsson JA, Steffensen KR (2012) Liver X receptor biology and pharmacology: new pathways, challenges and opportunities. Trends Pharmacol Sci 33:394–404. doi:10.1016/j.tips.2012.03.013

    Article  PubMed  CAS  Google Scholar 

  37. Zelcer N, Hong C, Boyadjian R, Tontonoz P (2009) LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science 325:100–104. doi:10.1126/science.1168974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Radhakrishnan A, Ikeda Y, Kwon HJ, Brown MS, Goldstein JL (2007) Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig. Proc Natl Acad Sci USA 104:6511–6518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Laffitte BA, Chao LC, Li J et al (2003) Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proc Natl Acad Sci USA 100:5419–5424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Beaven SW, Matveyenko A, Wroblewski K et al (2013) Reciprocal regulation of hepatic and adipose lipogenesis by liver X receptors in obesity and insulin resistance. Cell Metab 18:106–117. doi:10.1016/j.cmet.2013.04.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Russo V (2011) Metabolism, LXR/LXR ligands, and tumor immune escape. J Leukoc Biol 90:673–679. doi:10.1189/jlb.0411198

    Article  PubMed  CAS  Google Scholar 

  42. Fukuchi J, Kokontis JM, Hiipakka RA, Chuu CP, Liao S (2004) Antiproliferative effect of liver X receptor agonists on LNCaP human prostate cancer cells. Cancer Res 64:7686–7689

    Article  PubMed  CAS  Google Scholar 

  43. Vedin LL, Lewandowski SA, Parini P, Gustafsson JA, Steffensen KR (2009) The oxysterol receptor LXR inhibits proliferation of human breast cancer cells. Carcinogenesis 30:575–579. doi:10.1093/carcin/bgp029

    Article  PubMed  CAS  Google Scholar 

  44. Lo Sasso G, Bovenga F, Murzilli S et al (2013) Liver X receptors inhibit proliferation of human colorectal cancer cells and growth of intestinal tumors in mice. Gastroenterology 144:1497–1507. doi:10.1053/j.gastro.2013.02.005

    Article  PubMed  CAS  Google Scholar 

  45. Nelson ER, Wardell SE, Jasper JS et al (2013) 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science 342:1094–1098. doi:10.1126/science.1241908

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Flaveny CA, Griffett K, El-Gendy BE et al (2015) Broad anti-tumor activity of a small molecule that selectively targets the warburg effect and lipogenesis. Cancer Cell 28:42–56. doi:10.1016/j.ccell.2015.05.007

    Article  PubMed  CAS  Google Scholar 

  47. Pencheva N, Buss CG, Posada J, Merghoub T, Tavazoie SF (2014) Broad-spectrum therapeutic suppression of metastatic melanoma through nuclear hormone receptor activation. Cell 156:986–1001. doi:10.1016/j.cell.2014.01.038

    Article  PubMed  CAS  Google Scholar 

  48. Pencheva N, Tran H, Buss C, Huh D, Drobnjak M, Busam K, Tavazoie SF (2012) Convergent multi-miRNA targeting of ApoE drives LRP1/LRP8-dependent melanoma metastasis and angiogenesis. Cell 151:1068–1082. doi:10.1016/j.cell.2012.10.028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Villablanca EJ, Raccosta L, Zhou D et al (2010) Tumor-mediated liver X receptor-alpha activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses. Nat Med 16:98–105. doi:10.1038/nm.2074

    Article  PubMed  CAS  Google Scholar 

  50. Joseph SB, Castrillo A, Laffitte BA, Mangelsdorf DJ, Tontonoz P (2003) Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 9:213–219

    Article  PubMed  CAS  Google Scholar 

  51. Bensinger SJ, Tontonoz P (2008) Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature 454:470–477

    Article  PubMed  CAS  Google Scholar 

  52. Joseph SB, Bradley MN, Castrillo A et al (2004) LXR-dependent gene expression is important for macrophage survival and the innate immune response. Cell 119:299–309

    Article  PubMed  CAS  Google Scholar 

  53. Valledor AF, Hsu LC, Ogawa S, Sawka-Verhelle D, Karin M, Glass CK (2004) Activation of liver X receptors and retinoid X receptors prevents bacterial-induced macrophage apoptosis. Proc Natl Acad Sci USA 101:17813–17818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Gonzalez NA, Bensinger SJ, Hong C et al (2009) Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31:245–258. doi:10.1016/j.immuni.2009.06.018

    Article  CAS  Google Scholar 

  55. Bensinger SJ, Bradley MN, Joseph SB et al (2008) LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 134:97–111. doi:10.1016/j.cell.2008.04.052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Cui G, Qin X, Wu L et al (2011) Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation. J Clin Investig 121:658–670. doi:10.1172/JCI42974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Hu X, Wang Y, Hao LY et al (2015) Sterol metabolism controls TH17 differentiation by generating endogenous RORgamma agonists. Nat Chem Biol 11:141–147. doi:10.1038/nchembio.1714

    Article  PubMed  CAS  Google Scholar 

  58. Raccosta L, Fontana R, Maggioni D et al (2013) The oxysterol-CXCR2 axis plays a key role in the recruitment of tumor-promoting neutrophils. J Exp Med 210:1711–1728. doi:10.1084/jem.20130440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Ribas A, Hodi FS, Callahan M, Konto C, Wolchok J (2013) Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med 368:1365–1366. doi:10.1056/NEJMc1302338

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian Association for Cancer Research (AIRC) and by the Italian Ministry of Health (RF2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Russo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

This paper is a Focussed Research Review based on a presentation given at the Twelfth Meeting of the Network Italiano per la Bioterapia dei Tumori (NIBIT) on Cancer Bio-Immunotherapy, held in Siena, Italy, 9th–11th October 2014. It is part of a series of Focussed Research Reviews and meeting report in Cancer Immunology, Immunotherapy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raccosta, L., Fontana, R., Corna, G. et al. Cholesterol metabolites and tumor microenvironment: the road towards clinical translation. Cancer Immunol Immunother 65, 111–117 (2016). https://doi.org/10.1007/s00262-015-1779-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-015-1779-0

Keywords

Navigation