Skip to main content
Log in

Protection from tumor recurrence following adoptive immunotherapy varies with host conditioning regimen despite initial regression of autochthonous murine brain tumors

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Adoptive T cell transfer (ACT) has achieved clinical success in treating established cancer, particularly in combination with lymphodepleting regimens. Our group previously demonstrated that ACT following whole-body irradiation (WBI) promotes high-level T cell accumulation, regression of established brain tumors, and long-term protection from tumor recurrence in a mouse model of SV40 T antigen-induced choroid plexus tumors. Here we asked whether an approach that can promote strong donor T-cell responses in the absence of WBI might also produce this dramatic and durable tumor elimination following ACT. Agonist anti-CD40 antibody can enhance antigen-specific CD8+ T-cell responses and has shown clinical efficacy as a monotherapy in the setting of cancer. We show that anti-CD40 conditioning promotes rapid accumulation of tumor-specific donor CD8+ T cells in the brain and regression of autochthonous T antigen-induced choroid plexus tumors, similar to WBI. Despite a significant increase in the lifespan, tumors eventually recurred in anti-CD40-conditioned mice coincident with loss of T-cell persistence from both the brain and lymphoid organs. Depletion of CD8+ T cells from the peripheral lymphoid organs of WBI-conditioned recipients failed to promote tumor recurrence, but donor cells persisted in the brains long-term in CD8-depleted mice. These results demonstrate that anti-CD40 conditioning effectively enhances ACT-mediated acute elimination of autochthonous tumors, but suggest that mechanisms associated with WBI conditioning, such as the induction of long-lived T cells, may be critical for protection from tumor recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACT:

Adoptive T-cell transfer

cLN:

Superficial cervical lymph nodes

FITC:

Fluorescein isothiocyanate

H&E:

Hematoxylin and eosin

IFN:

Interferon

IL:

Interleukin

i.p.:

Intraperitoneal

KLRG1:

Killer cell lectin-like receptor G1

NBF:

Neutral buffered formalin

pAPC:

Professional antigen-presenting cell

RBC:

Red blood cell

SV40:

Simian virus 40

T Ag:

SV40 large T antigen

TCR:

T-cell receptor

WBI:

Whole-body irradiation

References

  1. Dudley ME, Wunderlich JR, Robbins PF et al (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–854. doi:10.1126/science.1076514

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Rosenberg SA, Yang JC, Sherry RM et al (2011) Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res 17:4550–4557. doi:10.1158/1078-0432.CCR-11-0116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Gattinoni L, Finkelstein SE, Klebanoff CA et al (2005) Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med 202:907–912. doi:10.1084/jem.20050732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Klebanoff CA, Khong HT, Antony PA, Palmer DC, Restifo NP (2005) Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol 26:111–117. doi:10.1016/j.it.2004.12.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Reits EA, Hodge JW, Herberts CA et al (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203:1259–1271. doi:10.1084/jem.20052494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Paulos CM, Wrzesinski C, Kaiser A et al (2007) Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J Clin Investig 117:2197–2204. doi:10.1172/JCI32205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Huang J, Khong HT, Dudley ME, El-Gamil M, Li YF, Rosenberg SA, Robbins PF (2005) Survival, persistence, and progressive differentiation of adoptively transferred tumor-reactive T cells associated with tumor regression. J Immunother 28:258–267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Schell TD, Mylin LM, Georgoff I, Teresky AK, Levine AJ, Tevethia SS (1999) Cytotoxic T-lymphocyte epitope immunodominance in the control of choroid plexus tumors in simian virus 40 large T antigen transgenic mice. J Virol 73:5981–5993

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Schell TD, Tevethia SS (2001) Control of advanced choroid plexus tumors in SV40 T antigen transgenic mice following priming of donor CD8(+) T lymphocytes by the endogenous tumor antigen. J Immunol 167:6947–6956

    Article  CAS  PubMed  Google Scholar 

  10. Tatum AM, Mylin LM, Bender SJ, Fischer MA, Vigliotti BA, Tevethia MJ, Tevethia SS, Schell TD (2008) CD8+T cells targeting a single immunodominant epitope are sufficient for elimination of established SV40 T antigen-induced brain tumors. J Immunol 181:4406–4417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Ward-Kavanagh LK, Zhu J, Cooper TK, Schell TD (2014) Whole-body irradiation increases the magnitude and persistence of adoptively transferred T cells associated with tumor regression in a mouse model of prostate cancer. Cancer Immunol Res 2:777–788. doi:10.1158/2326-6066.CIR-13-0164

    Article  CAS  PubMed  Google Scholar 

  12. Yorty JL, Tevethia SS, Schell TD (2008) Rapid accumulation of adoptively transferred CD8+ T cells at the tumor site is associated with long-term control of SV40 T antigen-induced tumors. Cancer Immunol Immunother 57:883–895. doi:10.1007/s00262-007-0424-y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Van Dyke T, Finlay C, Levine AJ (1985) A comparison of several lines of transgenic mice containing the SV40 early genes. In: Cold Spring Harbor symposia on quantitative biology, vol 50, pp 671–678

  14. Van Dyke TA, Finlay C, Miller D, Marks J, Lozano G, Levine AJ (1987) Relationship between simian virus 40 large tumor antigen expression and tumor formation in transgenic mice. J Virol 61:2029–2032

    PubMed Central  PubMed  Google Scholar 

  15. Roy EJ, Cho BK, Rund LA, Patrick TA, Kranz DM (1998) Targeting T cells against brain tumors with a bispecific ligand-antibody conjugate. Int J Cancer 76:761–766

    Article  CAS  PubMed  Google Scholar 

  16. French RR, Chan HT, Tutt AL, Glennie MJ (1999) CD40 antibody evokes a cytotoxic T-cell response that eradicates lymphoma and bypasses T-cell help. Nat Med 5:548–553. doi:10.1038/8426

    Article  CAS  PubMed  Google Scholar 

  17. Diehl L, den Boer AT, Schoenberger SP, van der Voort EI, Schumacher TN, Melief CJ, Offringa R, Toes RE (1999) CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy. Nat Med 5:774–779. doi:10.1038/10495

    Article  CAS  PubMed  Google Scholar 

  18. Otahal P, Knowles BB, Tevethia SS, Schell TD (2007) Anti-CD40 conditioning enhances the T(CD8) response to a highly tolerogenic epitope and subsequent immunotherapy of simian virus 40 T antigen-induced pancreatic tumors. J Immunol 179:6686–6695

    Article  CAS  PubMed  Google Scholar 

  19. Staveley-O’Carroll K, Schell TD, Jimenez M, Mylin LM, Tevethia MJ, Schoenberger SP, Tevethia SS (2003) In vivo ligation of CD40 enhances priming against the endogenous tumor antigen and promotes CD8+ T cell effector function in SV40 T antigen transgenic mice. J Immunol 171:697–707

    Article  PubMed  Google Scholar 

  20. Eliopoulos AG, Young LS (2004) The role of the CD40 pathway in the pathogenesis and treatment of cancer. Curr Opin Pharmacol 4:360–367. doi:10.1016/j.coph.2004.02.008

    Article  CAS  PubMed  Google Scholar 

  21. Ridge JP, Di Rosa F, Matzinger P (1998) A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393:474–478. doi:10.1038/30989

    Article  CAS  PubMed  Google Scholar 

  22. Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR (1998) Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393:478–480. doi:10.1038/30996

    Article  CAS  PubMed  Google Scholar 

  23. Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 393:480–483. doi:10.1038/31002

    Article  CAS  PubMed  Google Scholar 

  24. van Mierlo GJ, den Boer AT, Medema JP, van der Voort EI, Fransen MF, Offringa R, Melief CJ, Toes RE (2002) CD40 stimulation leads to effective therapy of CD40(−) tumors through induction of strong systemic cytotoxic T lymphocyte immunity. Proc Natl Acad Sci USA 99:5561–5566. doi:10.1073/pnas.082107699

    Article  PubMed Central  PubMed  Google Scholar 

  25. Beatty GL, Chiorean EG, Fishman MP et al (2011) CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331:1612–1616. doi:10.1126/science.1198443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Hamzah J, Nelson D, Moldenhauer G, Arnold B, Hammerling GJ, Ganss R (2008) Vascular targeting of anti-CD40 antibodies and IL-2 into autochthonous tumors enhances immunotherapy in mice. J Clin Investig 118:1691–1699. doi:10.1172/JCI33201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Hess S, Engelmann H (1996) A novel function of CD40: induction of cell death in transformed cells. J Exp Med 183:159–167

    Article  CAS  PubMed  Google Scholar 

  28. Vonderheide RH, Flaherty KT, Khalil M et al (2007) Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J Clin Oncol 25:876–883. doi:10.1200/JCO.2006.08.3311

    Article  CAS  PubMed  Google Scholar 

  29. Cheever MA (2008) Twelve immunotherapy drugs that could cure cancers. Immunol Rev 222:357–368. doi:10.1111/j.1600-065X.2008.00604.x

    Article  CAS  PubMed  Google Scholar 

  30. Khong A, Nelson DJ, Nowak AK, Lake RA, Robinson BW (2012) The use of agonistic anti-CD40 therapy in treatments for cancer. Int Rev Immunol 31:246–266. doi:10.3109/08830185.2012.698338

    Article  CAS  PubMed  Google Scholar 

  31. Ryan CM, Staveley-O’Carroll K, Schell TD (2008) Combined anti-CD40 conditioning and well-timed immunization prolongs CD8+ T cell accumulation and control of established brain tumors. J Immunother 31:906–920. doi:10.1097/CJI.0b013e318189f155

    Article  PubMed Central  PubMed  Google Scholar 

  32. Cho HI, Reyes-Vargas E, Delgado JC, Celis E (2012) A potent vaccination strategy that circumvents lymphodepletion for effective antitumor adoptive T-cell therapy. Cancer Res 72:1986–1995. doi:10.1158/0008-5472.CAN-11-3246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Liu C, Lewis CM, Lou Y et al (2012) Agonistic antibody to CD40 boosts the antitumor activity of adoptively transferred T cells in vivo. J Immunother 35:276–282. doi:10.1097/CJI.0b013e31824e7f43

    Article  PubMed  Google Scholar 

  34. Brinster RL, Chen HY, Messing A, van Dyke T, Levine AJ, Palmiter RD (1984) Transgenic mice harboring SV40 T-antigen genes develop characteristic brain tumors. Cell 37:367–379

    Article  CAS  PubMed  Google Scholar 

  35. Dunn TB (1954) Normal and pathologic anatomy of the reticular tissue in laboratory mice, with a classification and discussion of neoplasms. J Natl Cancer Inst 14:1281–1433

    CAS  PubMed  Google Scholar 

  36. Mylin LM, Schell TD, Roberts D, Epler M, Boesteanu A, Collins EJ, Frelinger JA, Joyce S, Tevethia SS (2000) Quantitation of CD8(+) T-lymphocyte responses to multiple epitopes from simian virus 40 (SV40) large T antigen in C57BL/6 mice immunized with SV40, SV40 T-antigen-transformed cells, or vaccinia virus recombinants expressing full-length T antigen or epitope minigenes. J Virol 74:6922–6934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Goodwin EM, Zhong Q, Abendroth CS, Ward-Kavanagh LK, Schell TD, Cooper TK (2013) Anaplastic renal carcinoma expressing SV40 T antigen in a female TRAMP mouse. Comp Med 63:338–341

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Sarmiento M, Glasebrook AL, Fitch FW (1980) IgG or IgM monoclonal antibodies reactive with different determinants on the molecular complex bearing Lyt 2 antigen block T cell-mediated cytolysis in the absence of complement. J Immunol 125:2665–2672

    CAS  PubMed  Google Scholar 

  39. Klebanoff CA, Gattinoni L, Palmer DC et al (2011) Determinants of successful CD8+ T-cell adoptive immunotherapy for large established tumors in mice. Clin Cancer Res 17:5343–5352. doi:10.1158/1078-0432.CCR-11-0503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Forget MA, Huon Y, Reuben A, Grange C, Liberman M, Martin J, Mes-Masson AM, Arbour N, Lapointe R (2012) Stimulation of Wnt/ss-catenin pathway in human CD8+ T lymphocytes from blood and lung tumors leads to a shared young/memory phenotype. PLoS One 7:e41074. doi:10.1371/journal.pone.0041074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Gattinoni L, Zhong XS, Palmer DC et al (2009) Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med 15:808–813. doi:10.1038/nm.1982

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Kedl RM, Jordan M, Potter T, Kappler J, Marrack P, Dow S (2001) CD40 stimulation accelerates deletion of tumor-specific CD8+ T cells in the absence of tumor-antigen vaccination. Proc Natl Acad Sci USA 98:10811–10816. doi:10.1073/pnas.191371898

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Goding SR, Wilson KA, Xie Y et al (2013) Restoring immune function of tumor-specific CD4+ T cells during recurrence of melanoma. J Immunol 190:4899–4909. doi:10.4049/jimmunol.1300271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Ruter J, Antonia SJ, Burris HA, Huhn RD, Vonderheide RH (2010) Immune modulation with weekly dosing of an agonist CD40 antibody in a phase I study of patients with advanced solid tumors. Cancer Biol Ther 10:983–993. doi:10.4161/cbt.10.10.13251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Mauri C, Mars LT, Londei M (2000) Therapeutic activity of agonistic monoclonal antibodies against CD40 in a chronic autoimmune inflammatory process. Nat Med 6:673–679. doi:10.1038/76251

    Article  CAS  PubMed  Google Scholar 

  46. Wells JW, Cowled CJ, Farzaneh F, Noble A (2008) Combined triggering of dendritic cell receptors results in synergistic activation and potent cytotoxic immunity. J Immunol 181:3422–3431

    Article  CAS  PubMed  Google Scholar 

  47. Ahonen CL, Doxsee CL, McGurran SM, Riter TR, Wade WF, Barth RJ, Vasilakos JP, Noelle RJ, Kedl RM (2004) Combined TLR and CD40 triggering induces potent CD8+ T cell expansion with variable dependence on type I IFN. J Exp Med 199:775–784. doi:10.1084/jem.20031591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Hervas-Stubbs S, Mancheno U, Riezu-Boj JI et al (2012) CD8 T cell priming in the presence of IFN-alpha renders CTLs with improved responsiveness to homeostatic cytokines and recall antigens: important traits for adoptive T cell therapy. J Immunol 189:3299–3310. doi:10.4049/jimmunol.1102495

    Article  CAS  PubMed  Google Scholar 

  49. Zhang M, Ju W, Yao Z et al (2012) Augmented IL-15Ralpha expression by CD40 activation is critical in synergistic CD8 T cell-mediated antitumor activity of anti-CD40 antibody with IL-15 in TRAMP-C2 tumors in mice. J Immunol 188:6156–6164. doi:10.4049/jimmunol.1102604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Zhang X, Sun S, Hwang I, Tough DF, Sprent J (1998) Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8:591–599

    Article  CAS  PubMed  Google Scholar 

  51. Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord EM (2005) Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol 174:7516–7523

    Article  CAS  PubMed  Google Scholar 

  52. Obeid M, Panaretakis T, Joza N, Tufi R, Tesniere A, van Endert P, Zitvogel L, Kroemer G (2007) Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis. Cell Death Differ 14:1848–1850. doi:10.1038/sj.cdd.4402201

    Article  CAS  PubMed  Google Scholar 

  53. Apetoh L, Ghiringhelli F, Tesniere A et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059. doi:10.1038/nm1622

    Article  CAS  PubMed  Google Scholar 

  54. Golden EB, Frances D, Pellicciotta I, Demaria S, Helen Barcellos-Hoff M, Formenti SC (2014) Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 3:e28518. doi:10.4161/onci.28518

    Article  PubMed Central  PubMed  Google Scholar 

  55. Labeur MS, Roters B, Pers B, Mehling A, Luger TA, Schwarz T, Grabbe S (1999) Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage. J Immunol 162:168–175

    CAS  PubMed  Google Scholar 

  56. Crompton JG, Sukumar M, Restifo NP (2014) Uncoupling T-cell expansion from effector differentiation in cell-based immunotherapy. Immunol Rev 257:264–276. doi:10.1111/imr.12135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jeremy Haley for outstanding technical assistance and Penn State Hershey Flow Cytometry Core Facility personnel for support with data acquisition. This work was supported by research Grant RO1 CA025000 from the National Cancer Institute, National Institutes of Health (to Todd Schell). Portions of this work were previously published and presented in an abstract and poster at the Translational Research Cancer Centers Consortium in Seven Springs, PA in February of 2014.

Conflict of interest

All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd D. Schell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 9312 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cozza, E.M., Cooper, T.K., Budgeon, L.R. et al. Protection from tumor recurrence following adoptive immunotherapy varies with host conditioning regimen despite initial regression of autochthonous murine brain tumors. Cancer Immunol Immunother 64, 325–336 (2015). https://doi.org/10.1007/s00262-014-1635-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1635-7

Keywords

Navigation