Skip to main content

Advertisement

Log in

Clinical evaluation of systemic and local immune responses in cancer: time for integration

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The immune system has a dual role in cancer development and progression. On the one hand, it can eradicate emerging malignant cells, but on the other hand, it can actively promote growth of malignant cells, their invasive capacities and their ability to metastasize. Immune cells with predominantly anti-tumor functionality include cells of the innate immune system, such as natural killer cells, and cells of adaptive immunity, such as conventional dendritic cells and cytotoxic T lymphocytes. Immune cells with predominantly pro-tumor functionality include a broad spectrum of cells of the innate and adaptive immune system, such as type 2 neutrophils and macrophages, plasmacytoid DC, myeloid-derived suppressor cells and regulatory T lymphocytes. The presence of immune cells with tumor-suppressive and tumor-promoting activity in the cancer microenvironment and in peripheral blood is usually associated with good clinical outcomes and poor clinical outcomes, respectively. Significant advances in experimental and clinical oncoimmunology achieved in the last decade open an opportunity for the use of modern morphologic, flow cytometric and functional tests in clinical practice. In this review, we describe an integrated approach to clinical evaluation of the immune status of cancer patients for diagnostic purposes, prognostic/predictive purposes (evaluation of patient prognosis and response to treatment) and for therapeutic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smyth MJ, Dunn GP, Schreiber RD (2006) Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 90:1–50

    CAS  PubMed  Google Scholar 

  2. Papamichail M, Perez SA, Gritzapis AD, Baxevanis CN (2004) Natural killer lymphocytes: biology, development, and function. Cancer Immunol Immunother 53(3):176–186

    PubMed  Google Scholar 

  3. Orange JS, Ballas ZK (2006) Natural killer cells in human health and disease. Clin Immunol 118(1):1–10

    CAS  PubMed  Google Scholar 

  4. Villegas FR, Coca S, Villarrubia VG, Jimenez R, Chillon MJ, Jareno J, Zuil M, Callol L (2002) Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer (Amsterdam, Netherlands) 35(1):23–28

    Google Scholar 

  5. Ishigami S, Natsugoe S, Tokuda K, Nakajo A, Che X, Iwashige H, Aridome K, Hokita S, Aikou T (2000) Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer 88(3):577–583

    CAS  PubMed  Google Scholar 

  6. Coca S, Perez-Piqueras J, Martinez D, Colmenarejo A, Saez MA, Vallejo C, Martos JA, Moreno M (1997) The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer 79(12):2320–2328

    CAS  PubMed  Google Scholar 

  7. Schleypen JS, Baur N, Kammerer R, Nelson PJ, Rohrmann K, Grone EF, Hohenfellner M, Haferkamp A, Pohla H, Schendel DJ, Falk CS, Noessner E (2006) Cytotoxic markers and frequency predict functional capacity of natural killer cells infiltrating renal cell carcinoma. Clin Cancer Res 12(3 Pt 1):718–725

    CAS  PubMed  Google Scholar 

  8. Al-Shibli K, Al-Saad S, Donnem T, Persson M, Bremnes RM, Busund LT (2009) The prognostic value of intraepithelial and stromal innate immune system cells in non-small cell lung carcinoma. Histopathology 55(3):301–312

    PubMed  Google Scholar 

  9. Sorbye SW, Kilvaer TK, Valkov A, Donnem T, Smeland E, Al-Shibli K, Bremnes RM, Busund LT (2012) Prognostic impact of CD57, CD68, M-CSF, CSF-1R, Ki67 and TGF-beta in soft tissue sarcomas. BMC Clin Pathol 12:7

    PubMed Central  PubMed  Google Scholar 

  10. Bell D, Chomarat P, Broyles D, Netto G, Harb GM, Lebecque S, Valladeau J, Davoust J, Palucka KA, Banchereau J (1999) In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J Exp Med 190(10):1417–1426

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Colasante A, Castrilli G, Aiello FB, Brunetti M, Musiani P (1995) Role of cytokines in distribution and differentiation of dendritic cell/Langerhans’ cell lineage in human primary carcinomas of the lung. Hum Pathol 26(8):866–872

    CAS  PubMed  Google Scholar 

  12. Inoshima N, Nakanishi Y, Minami T, Izumi M, Takayama K, Yoshino I, Hara N (2002) The influence of dendritic cell infiltration and vascular endothelial growth factor expression on the prognosis of non-small cell lung cancer. Clin Cancer Res 8(11):3480–3486

    CAS  PubMed  Google Scholar 

  13. Zeid NA, Muller HK (1993) S100 positive dendritic cells in human lung tumors associated with cell differentiation and enhanced survival. Pathology 25(4):338–343

    CAS  PubMed  Google Scholar 

  14. Katsenelson NS, Shurin GV, Bykovskaia SN, Shogan J, Shurin MR (2001) Human small cell lung carcinoma and carcinoid tumor regulate dendritic cell maturation and function. Mod Pathol 14(1):40–45

    CAS  PubMed  Google Scholar 

  15. Inoue K, Furihata M, Ohtsuki Y, Fujita Y (1993) Distribution of S-100 protein-positive dendritic cells and expression of HLA-DR antigen in transitional cell carcinoma of the urinary bladder in relation to tumour progression and prognosis. Virchows Arch 422(5):351–355

    CAS  Google Scholar 

  16. Reichert TE, Scheuer C, Day R, Wagner W, Whiteside TL (2001) The number of intratumoral dendritic cells and zeta-chain expression in T cells as prognostic and survival biomarkers in patients with oral carcinoma. Cancer 91(11):2136–2147

    CAS  PubMed  Google Scholar 

  17. Dallal RM, Christakos P, Lee K, Egawa S, Son YI, Lotze MT (2002) Paucity of dendritic cells in pancreatic cancer. Surgery 131(2):135–138

    PubMed  Google Scholar 

  18. Troy A, Davidson P, Atkinson C, Hart D (1998) Phenotypic characterisation of the dendritic cell infiltrate in prostate cancer. J Urol 160(1):214–219

    CAS  PubMed  Google Scholar 

  19. Tsukayama S, Omura K, Yoshida K, Tanaka Y, Watanabe G (2005) Prognostic value of CD83-positive mature dendritic cells and their relation to vascular endothelial growth factor in advanced human gastric cancer. Oncol Rep 14(2):369–375

    CAS  PubMed  Google Scholar 

  20. Vakkila J, Jaffe R, Michelow M, Lotze MT (2006) Pediatric cancers are infiltrated predominantly by macrophages and contain a paucity of dendritic cells: a major nosologic difference with adult tumors. Clin Cancer Res 12(7 Pt 1):2049–2054

    CAS  PubMed  Google Scholar 

  21. Nagorsen D, Voigt S, Berg E, Stein H, Thiel E, Loddenkemper C (2007) Tumor-infiltrating macrophages and dendritic cells in human colorectal cancer: relation to local regulatory T cells, systemic T-cell response against tumor-associated antigens and survival. J Transl Med 5:62

    PubMed Central  PubMed  Google Scholar 

  22. Kurabayashi A, Furihata M, Matsumoto M, Hayashi H, Ohtsuki Y (2004) Distribution of tumor-infiltrating dendritic cells in human non-small cell lung carcinoma in relation to apoptosis. Pathol Int 54(5):302–310

    PubMed  Google Scholar 

  23. Lespagnard L, Gancberg D, Rouas G, Leclercq G, de Saint-Aubain Somerhausen N, Di Leo A, Piccart M, Verhest A, Larsimont D (1999) Tumor-infiltrating dendritic cells in adenocarcinomas of the breast: a study of 143 neoplasms with a correlation to usual prognostic factors and to clinical outcome. Int J Cancer 84(3):309–314

    CAS  PubMed  Google Scholar 

  24. Coventry BJ, Lee PL, Gibbs D, Hart DN (2002) Dendritic cell density and activation status in human breast cancer—CD1a, CMRF-44, CMRF-56 and CD-83 expression. Br J Cancer 86(4):546–551

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Miyagawa S, Soeda J, Takagi S, Miwa S, Ichikawa E, Noike T (2004) Prognostic significance of mature dendritic cells and factors associated with their accumulation in metastatic liver tumors from colorectal cancer. Hum Pathol 35(11):1392–1396

    PubMed  Google Scholar 

  26. O’Donnell RK, Mick R, Feldman M, Hino S, Wang Y, Brose MS, Muschel RJ (2007) Distribution of dendritic cell subtypes in primary oral squamous cell carcinoma is inconsistent with a functional response. Cancer Lett 255(1):145–152

    PubMed Central  PubMed  Google Scholar 

  27. Furihata M, Ono Y, Ichikawa K, Tomita S, Fujimori T, Kubota K (2005) Prognostic significance of CD83 positive, mature dendritic cells in the gallbladder carcinoma. Oncol Rep 14(2):353–356

    CAS  PubMed  Google Scholar 

  28. Troy AJ, Davidson PJ, Atkinson CH, Hart DN (1999) CD1a dendritic cells predominate in transitional cell carcinoma of bladder and kidney but are minimally activated. J Urol 161(6):1962–1967

    CAS  PubMed  Google Scholar 

  29. Vermi W, Bonecchi R, Facchetti F, Bianchi D, Sozzani S, Festa S, Berenzi A, Cella M, Colonna M (2003) Recruitment of immature plasmacytoid dendritic cells (plasmacytoid monocytes) and myeloid dendritic cells in primary cutaneous melanomas. J Pathol 200(2):255–268

    PubMed  Google Scholar 

  30. Bigotti G, Coli A, Castagnola D (1991) Distribution of Langerhans cells and HLA class II molecules in prostatic carcinomas of different histopathological grade. Prostate 19(1):73–87

    CAS  PubMed  Google Scholar 

  31. Coppola D, Fu L, Nicosia SV, Kounelis S, Jones M (1998) Prognostic significance of p53, bcl-2, vimentin, and S100 protein-positive Langerhans cells in endometrial carcinoma. Hum Pathol 29(5):455–462

    CAS  PubMed  Google Scholar 

  32. Kikuchi K, Kusama K, Taguchi K, Ishikawa F, Okamoto M, Shimada J, Sakashita H, Yamamo Y (2002) Dendritic cells in human squamous cell carcinoma of the oral cavity. Anticancer Res 22(2A):545–557

    Google Scholar 

  33. Hayati AR, Zulkarnaen M (2007) An immunohistochemical study of CD1a and CD83-positive infiltrating dendritic cell density in cervical neoplasia. Int J Gynecol Pathol 26(1):83–88

    PubMed  Google Scholar 

  34. Dieu-Nosjean MC, Antoine M, Danel C, Heudes D, Wislez M, Poulot V, Rabbe N, Laurans L, Tartour E, de Chaisemartin L, Lebecque S, Fridman WH, Cadranel J (2008) Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 26(27):4410–4417

    CAS  PubMed  Google Scholar 

  35. Dai F, Liu L, Che G, Yu N, Pu Q, Zhang S, Ma J, Ma L, You Z (2010) The number and microlocalization of tumor-associated immune cells are associated with patient’s survival time in non-small cell lung cancer. BMC Cancer 10:220

    PubMed Central  PubMed  Google Scholar 

  36. Treilleux I, Blay JY, Bendriss-Vermare N, Ray-Coquard I, Bachelot T, Guastalla JP, Bremond A, Goddard S, Pin JJ, Barthelemy-Dubois C, Lebecque S (2004) Dendritic cell infiltration and prognosis of early stage breast cancer. Clin Cancer Res 10(22):7466–7474

    CAS  PubMed  Google Scholar 

  37. Coventry BJ, Morton J (2003) CD1a-positive infiltrating-dendritic cell density and 5-year survival from human breast cancer. Br J Cancer 89(3):533–538

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Cai XY, Gao Q, Qiu SJ, Ye SL, Wu ZQ, Fan J, Tang ZY (2006) Dendritic cell infiltration and prognosis of human hepatocellular carcinoma. J Cancer Res Clin Oncol 132(5):293–301

    PubMed  Google Scholar 

  39. Simonetti O, Goteri G, Lucarini G, Rubini C, Stramazzotti D, Lo Muzio L, Biagini G, Offidani A (2007) In melanoma changes of immature and mature dendritic cell expression correlate with tumor thickness: an immunohistochemical study. Int J Immunopathol Pharmacol 20(2):325–333

    CAS  PubMed  Google Scholar 

  40. Al-Shibli K, Al-Saad S, Andersen S, Donnem T, Bremnes RM, Busund LT (2010) The prognostic value of intraepithelial and stromal CD3-, CD117- and CD138-positive cells in non-small cell lung carcinoma. Apmis 118(5):371–382

    PubMed  Google Scholar 

  41. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoue F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pages F (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964

    CAS  PubMed  Google Scholar 

  42. Lee CH, Espinosa I, Vrijaldenhoven S, Subramanian S, Montgomery KD, Zhu S, Marinelli RJ, Peterse JL, Poulin N, Nielsen TO, West RB, Gilks CB, van de Rijn M (2008) Prognostic significance of macrophage infiltration in leiomyosarcomas. Clin Cancer Res 14(5):1423–1430

    CAS  PubMed  Google Scholar 

  43. Tomsova M, Melichar B, Sedlakova I, Steiner I (2008) Prognostic significance of CD3+ tumor-infiltrating lymphocytes in ovarian carcinoma. Gynecol Oncol 108(2):415–420

    CAS  PubMed  Google Scholar 

  44. Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW (2011) The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer 105(1):93–103

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Mlecnik B, Tosolini M, Kirilovsky A, Berger A, Bindea G, Meatchi T, Bruneval P, Trajanoski Z, Fridman WH, Pages F, Galon J (2011) Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol 29(6):610–618

    PubMed  Google Scholar 

  46. Schumacher K, Haensch W, Roefzaad C, Schlag PM (2001) Prognostic significance of activated CD8(+) T cell infiltrations within esophageal carcinomas. Cancer Res 61(10):3932–3936

    CAS  PubMed  Google Scholar 

  47. Sharma P, Shen Y, Wen S, Yamada S, Jungbluth AA, Gnjatic S, Bajorin DF, Reuter VE, Herr H, Old LJ, Sato E (2007) CD8 tumor-infiltrating lymphocytes are predictive of survival in muscle-invasive urothelial carcinoma. Proc Natl Acad Sci USA 104(10):3967–3972

    CAS  PubMed  Google Scholar 

  48. Oshikiri T, Miyamoto M, Shichinohe T, Suzuoki M, Hiraoka K, Nakakubo Y, Shinohara T, Itoh T, Kondo S, Katoh H (2003) Prognostic value of intratumoral CD8+ T lymphocyte in extrahepatic bile duct carcinoma as essential immune response. J Surg Oncol 84(4):224–228

    PubMed  Google Scholar 

  49. Kondratiev S, Sabo E, Yakirevich E, Lavie O, Resnick MB (2004) Intratumoral CD8+ T lymphocytes as a prognostic factor of survival in endometrial carcinoma. Clin Cancer Res 10(13):4450–4456

    PubMed  Google Scholar 

  50. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth AA, Frosina D, Gnjatic S, Ambrosone C, Kepner J, Odunsi T, Ritter G, Lele S, Chen YT, Ohtani H, Old LJ, Odunsi K (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102(51):18538–18543

    CAS  PubMed  Google Scholar 

  51. Wakabayashi O, Yamazaki K, Oizumi S, Hommura F, Kinoshita I, Ogura S, Dosaka-Akita H, Nishimura M (2003) CD4+ T cells in cancer stroma, not CD8+ T cells in cancer cell nests, are associated with favorable prognosis in human non-small cell lung cancers. Cancer Sci 94(11):1003–1009

    CAS  PubMed  Google Scholar 

  52. Ishibashi S, Ohashi Y, Suzuki T, Miyazaki S, Moriya T, Satomi S, Sasano H (2006) Tumor-associated tissue eosinophilia in human esophageal squamous cell carcinoma. Anticancer Res 26(2B):1419–1424

    Google Scholar 

  53. Sorbye SW, Kilvaer T, Valkov A, Donnem T, Smeland E, Al-Shibli K, Bremnes RM, Busund LT (2011) Prognostic impact of lymphocytes in soft tissue sarcomas. PLoS ONE 6(1):e14611

    PubMed Central  PubMed  Google Scholar 

  54. Al-Shibli KI, Donnem T, Al-Saad S, Persson M, Bremnes RM, Busund LT (2008) Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. Clin Cancer Res 14(16):5220–5227

    CAS  PubMed  Google Scholar 

  55. Pelletier MP, Edwardes MD, Michel RP, Halwani F, Morin JE (2001) Prognostic markers in resectable non-small cell lung cancer: a multivariate analysis. Can J Surg 44(3):180–188

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Sorbye SW, Kilvaer T, Valkov A, Donnem T, Smeland E, Al-Shibli K, Bremnes RM, Busund LT (2012) High expression of CD20+ lymphocytes in soft tissue sarcomas is a positive prognostic indicator. Oncoimmunology 1(1):75–77

    PubMed Central  PubMed  Google Scholar 

  57. Hiraoka K, Miyamoto M, Cho Y, Suzuoki M, Oshikiri T, Nakakubo Y, Itoh T, Ohbuchi T, Kondo S, Katoh H (2006) Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma. Br J Cancer 94(2):275–280

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Cho Y, Miyamoto M, Kato K, Fukunaga A, Shichinohe T, Kawarada Y, Hida Y, Oshikiri T, Kurokawa T, Suzuoki M, Nakakubo Y, Hiraoka K, Murakami S, Shinohara T, Itoh T, Okushiba S, Kondo S, Katoh H (2003) CD4+ and CD8+ T cells cooperate to improve prognosis of patients with esophageal squamous cell carcinoma. Cancer Res 63(7):1555–1559

    CAS  PubMed  Google Scholar 

  59. Rice AJ, Griffiths AP, Martin IG, Dixon MF (2000) Gastric carcinoma with prominent neutrophil infiltration. Histopathology 37(3):289–290

    CAS  PubMed  Google Scholar 

  60. Jensen HK, Donskov F, Marcussen N, Nordsmark M, Lundbeck F, von der Maase H (2009) Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma. J Clin Oncol 27(28):4709–4717

    PubMed  Google Scholar 

  61. Wislez M, Rabbe N, Marchal J, Milleron B, Crestani B, Mayaud C, Antoine M, Soler P, Cadranel J (2003) Hepatocyte growth factor production by neutrophils infiltrating bronchioloalveolar subtype pulmonary adenocarcinoma: role in tumor progression and death. Cancer Res 63(6):1405–1412

    CAS  PubMed  Google Scholar 

  62. Bellocq A, Antoine M, Flahault A, Philippe C, Crestani B, Bernaudin JF, Mayaud C, Milleron B, Baud L, Cadranel J (1998) Neutrophil alveolitis in bronchioloalveolar carcinoma: induction by tumor-derived interleukin-8 and relation to clinical outcome. Am J Pathol 152(1):83–92

    CAS  PubMed  Google Scholar 

  63. Tazzyman S, Lewis CE, Murdoch C (2009) Neutrophils: key mediators of tumour angiogenesis. Int J Exp Pathol 90(3):222–231

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Coffelt SB, Lewis CE, Naldini L, Brown JM, Ferrara N, De Palma M (2010) Elusive identities and overlapping phenotypes of proangiogenic myeloid cells in tumors. Am J Pathol 176(4):1564–1576

    PubMed  Google Scholar 

  65. Gregory AD, Houghton AM (2011) Tumor-associated neutrophils: new targets for cancer therapy. Cancer Res 71(7):2411–2416

    CAS  PubMed  Google Scholar 

  66. Zhao JJ, Pan K, Wang W, Chen JG, Wu YH, Lv L, Li JJ, Chen YB, Wang DD, Pan QZ, Li XD, Xia JC (2012) The prognostic value of tumor-infiltrating neutrophils in gastric adenocarcinoma after resection. PLoS ONE 7(3):e33655

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Rao HL, Chen JW, Li M, Xiao YB, Fu J, Zeng YX, Cai MY, Xie D (2012) Increased intratumoral neutrophil in colorectal carcinomas correlates closely with malignant phenotype and predicts patients’ adverse prognosis. PLoS ONE 7(1):e30806

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Nielsen HJ, Hansen U, Christensen IJ, Reimert CM, Brunner N, Moesgaard F (1999) Independent prognostic value of eosinophil and mast cell infiltration in colorectal cancer tissue. J Pathol 189(4):487–495

    CAS  PubMed  Google Scholar 

  69. Caruso RA, Bellocco R, Pagano M, Bertoli G, Rigoli L, Inferrera C (2002) Prognostic value of intratumoral neutrophils in advanced gastric carcinoma in a high-risk area in northern Italy. Mod Pathol 15(8):831–837

    PubMed  Google Scholar 

  70. Sickert D, Aust DE, Langer S, Haupt I, Baretton GB, Dieter P (2005) Characterization of macrophage subpopulations in colon cancer using tissue microarrays. Histopathology 46(5):515–521

    CAS  PubMed  Google Scholar 

  71. Talmadge JE, Donkor M, Scholar E (2007) Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Metastasis Rev 26(3–4):373–400

    PubMed  Google Scholar 

  72. Mantovani A, Sica A, Locati M (2007) New vistas on macrophage differentiation and activation. Eur J Immunol 37(1):14–16

    CAS  PubMed  Google Scholar 

  73. Solinas G, Germano G, Mantovani A, Allavena P (2009) Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 86(5):1065–1073

    CAS  PubMed  Google Scholar 

  74. Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66(2):605–612

    CAS  PubMed  Google Scholar 

  75. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78

    CAS  PubMed  Google Scholar 

  77. Ohtaki Y, Ishii G, Nagai K, Ashimine S, Kuwata T, Hishida T, Nishimura M, Yoshida J, Takeyoshi I, Ochiai A (2010) Stromal macrophage expressing CD204 is associated with tumor aggressiveness in lung adenocarcinoma. J Thorac Oncol 5(10):1507–1515

    PubMed  Google Scholar 

  78. Kurahara H, Shinchi H, Mataki Y, Maemura K, Noma H, Kubo F, Sakoda M, Ueno S, Natsugoe S, Takao S (2009) Significance of M2-polarized tumor-associated macrophage in pancreatic cancer. J Surg Res 167(2):e211–e219

    PubMed  Google Scholar 

  79. Komohara Y, Hasita H, Ohnishi K, Fujiwara Y, Suzu S, Eto M, Takeya M (2011) Macrophage infiltration and its prognostic relevance in clear cell renal cell carcinoma. Cancer Sci 102(7):1424–1431

    CAS  PubMed  Google Scholar 

  80. Espinosa I, Jose Carnicer M, Catasus L, Canet B, D’Angelo E, Zannoni GF, Prat J (2010) Myometrial invasion and lymph node metastasis in endometrioid carcinomas: tumor-associated macrophages, microvessel density, and HIF1A have a crucial role. Am J Surg Pathol 34(11):1708–1714

    PubMed  Google Scholar 

  81. Matta BM, Castellaneta A, Thomson AW (2010) Tolerogenic plasmacytoid DC. Eur J Immunol 40(10):2667–2676

    CAS  PubMed  Google Scholar 

  82. Vermi W, Soncini M, Melocchi L, Sozzani S, Facchetti F (2011) Plasmacytoid dendritic cells and cancer. J Leukoc Biol 90(4):681–690

    CAS  PubMed  Google Scholar 

  83. Labidi-Galy SI, Sisirak V, Meeus P, Gobert M, Treilleux I, Bajard A, Combes JD, Faget J, Mithieux F, Cassignol A, Tredan O, Durand I, Menetrier-Caux C, Caux C, Blay JY, Ray-Coquard I, Bendriss-Vermare N (2011) Quantitative and functional alterations of plasmacytoid dendritic cells contribute to immune tolerance in ovarian cancer. Cancer Res 71(16):5423–5434

    CAS  PubMed  Google Scholar 

  84. Thiel A, Pries R, Jeske S, Trenkle T, Wollenberg B (2009) Effect of head and neck cancer supernatant and CpG-oligonucleotides on migration and IFN-alpha production of plasmacytoid dendritic cells. Anticancer Res 29(8):3019–3025

    CAS  PubMed  Google Scholar 

  85. Watkins SK, Zhu Z, Riboldi E, Shafer-Weaver KA, Stagliano KE, Sklavos MM, Ambs S, Yagita H, Hurwitz AA (2011) FOXO3 programs tumor-associated DCs to become tolerogenic in human and murine prostate cancer. J Clin Investig 121(4):1361–1372

    PubMed  Google Scholar 

  86. Norian LA, Rodriguez PC, O’Mara LA, Zabaleta J, Ochoa AC, Cella M, Allen PM (2009) Tumor-infiltrating regulatory dendritic cells inhibit CD8+ T cell function via l-arginine metabolism. Cancer Res 69(7):3086–3094

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Jahrsdorfer B, Vollmer A, Blackwell SE, Maier J, Sontheimer K, Beyer T, Mandel B, Lunov O, Tron K, Nienhaus GU, Simmet T, Debatin KM, Weiner GJ, Fabricius D (2010) Granzyme B produced by human plasmacytoid dendritic cells suppresses T-cell expansion. Blood 115(6):1156–1165

    PubMed  Google Scholar 

  88. Sharma MD, Baban B, Chandler P, Hou DY, Singh N, Yagita H, Azuma M, Blazar BR, Mellor AL, Munn DH (2007) Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Investig 117(9):2570–2582

    CAS  PubMed  Google Scholar 

  89. Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G, Rubin SC, Kaiser LR, June CH (2001) Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 61(12):4766–4772

    CAS  PubMed  Google Scholar 

  90. Tokuno K, Hazama S, Yoshino S, Yoshida S, Oka M (2009) Increased prevalence of regulatory T-cells in the peripheral blood of patients with gastrointestinal cancer. Anticancer Res 29(5):1527–1532

    PubMed  Google Scholar 

  91. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10(9):942–949

    CAS  PubMed  Google Scholar 

  92. Schaefer C, Kim GG, Albers A, Hoermann K, Myers EN, Whiteside TL (2005) Characteristics of CD4+ CD25+ regulatory T cells in the peripheral circulation of patients with head and neck cancer. Br J Cancer 92(5):913–920

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Mathai AM, Kapadia MJ, Alexander J, Kernochan LE, Swanson PE, Yeh MM (2012) Role of Foxp3-positive tumor-infiltrating lymphocytes in the histologic features and clinical outcomes of hepatocellular carcinoma. Am J Surg Pathol 36(7):980–986

    PubMed  Google Scholar 

  94. Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G, Drebin JA, Strasberg SM, Eberlein TJ, Goedegebuure PS, Linehan DC (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169(5):2756–2761

    CAS  PubMed  Google Scholar 

  95. Miller AM, Lundberg K, Ozenci V, Banham AH, Hellstrom M, Egevad L, Pisa P (2006) CD4+ CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J Immunol 177(10):7398–7405

    CAS  PubMed  Google Scholar 

  96. Ichihara F, Kono K, Takahashi A, Kawaida H, Sugai H, Fujii H (2003) Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res 9(12):4404–4408

    PubMed  Google Scholar 

  97. Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, Banham AH (2006) Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 24(34):5373–5380

    PubMed  Google Scholar 

  98. Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, Xu Y, Li YW, Tang ZY (2007) Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 25(18):2586–2593

    PubMed  Google Scholar 

  99. Ishibashi Y, Tanaka S, Tajima K, Yoshida T, Kuwano H (2006) Expression of Foxp3 in non-small cell lung cancer patients is significantly higher in tumor tissues than in normal tissues, especially in tumors smaller than 30 mm. Oncol Rep 15(5):1315–1319

    CAS  PubMed  Google Scholar 

  100. De Panfilis G, Campanini N, Santini M, Mori G, Tognetti E, Maestri R, Lombardi M, Froio E, Ferrari D, Ricci R (2008) Phase- and stage-related proportions of T cells bearing the transcription factor FOXP3 infiltrate primary melanoma. J Invest Dermatol 128(3):676–684

    PubMed  Google Scholar 

  101. Miracco C, Mourmouras V, Biagioli M, Rubegni P, Mannucci S, Monciatti I, Cosci E, Tosi P, Luzi P (2007) Utility of tumour-infiltrating CD25+ FOXP3+ regulatory T cell evaluation in predicting local recurrence in vertical growth phase cutaneous melanoma. Oncol Rep 18(5):1115–1122

    PubMed  Google Scholar 

  102. Yokokawa J, Cereda V, Remondo C, Gulley JL, Arlen PM, Schlom J, Tsang KY (2008) Enhanced functionality of CD4+ CD25(high)FoxP3+ regulatory T cells in the peripheral blood of patients with prostate cancer. Clin Cancer Res 14(4):1032–1040

    CAS  PubMed  Google Scholar 

  103. Viguier M, Lemaitre F, Verola O, Cho MS, Gorochov G, Dubertret L, Bachelez H, Kourilsky P, Ferradini L (2004) Foxp3 expressing CD4+ CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J Immunol 173(2):1444–1453

    CAS  PubMed  Google Scholar 

  104. Liyanage UK, Goedegebuure PS, Moore TT, Viehl CT, Moo-Young TA, Larson JW, Frey DM, Ehlers JP, Eberlein TJ, Linehan DC (2006) Increased prevalence of regulatory T cells (Treg) is induced by pancreas adenocarcinoma. J Immunother 29(4):416–424

    PubMed  Google Scholar 

  105. Shimizu K, Nakata M, Hirami Y, Yukawa T, Maeda A, Tanemoto K (2010) Tumor-infiltrating Foxp3+ regulatory T cells are correlated with cyclooxygenase-2 expression and are associated with recurrence in resected non-small cell lung cancer. J Thorac Oncol 5(5):585–590

    PubMed  Google Scholar 

  106. Li JF, Chu YW, Wang GM, Zhu TY, Rong RM, Hou J, Xu M (2009) The prognostic value of peritumoral regulatory T cells and its correlation with intratumoral cyclooxygenase-2 expression in clear cell renal cell carcinoma. BJU Int 103(3):399–405

    PubMed  Google Scholar 

  107. Shen Z, Zhou S, Wang Y, Li RL, Zhong C, Liang C, Sun Y (2010) Higher intratumoral infiltrated Foxp3+ Treg numbers and Foxp3+/CD8+ ratio are associated with adverse prognosis in resectable gastric cancer. J Cancer Res Clin Oncol 136(10):1585–1595

    CAS  PubMed  Google Scholar 

  108. Nosho K, Baba Y, Tanaka N, Shima K, Hayashi M, Meyerhardt JA, Giovannucci E, Dranoff G, Fuchs CS, Ogino S (2010) Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: cohort study and literature review. J Pathol 222(4):350–366

    PubMed Central  PubMed  Google Scholar 

  109. Ladanyi A, Mohos A, Somlai B, Liszkay G, Gilde K, Fejos Z, Gaudi I, Timar J (2010) FOXP3+ cell density in primary tumor has no prognostic impact in patients with cutaneous malignant melanoma. Pathol Oncol Res 16(3):303–309

    PubMed  Google Scholar 

  110. Suzuki H, Chikazawa N, Tasaka T, Wada J, Yamasaki A, Kitaura Y, Sozaki M, Tanaka M, Onishi H, Morisaki T, Katano M (2010) Intratumoral CD8(+) T/FOXP3 (+) cell ratio is a predictive marker for survival in patients with colorectal cancer. Cancer Immunol Immunother 59(5):653–661

    CAS  PubMed  Google Scholar 

  111. Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D, Zhang A, Dahm P, Chao N, Gilboa E, Vieweg J (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Investig 115(12):3623–3633

    CAS  PubMed  Google Scholar 

  112. Elkord E, Alcantar-Orozco EM, Dovedi SJ, Tran DQ, Hawkins RE, Gilham DE (2010) T regulatory cells in cancer: recent advances and therapeutic potential. Exp Opinion Biol Therapy 10(11):1573–1586

    CAS  Google Scholar 

  113. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Fujimura T, Mahnke K, Enk AH (2010) Myeloid derived suppressor cells and their role in tolerance induction in cancer. J Dermatol Sci 59(1):1–6

    CAS  PubMed  Google Scholar 

  115. Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother 59(10):1593–1600

    PubMed Central  PubMed  Google Scholar 

  116. Sun HL, Zhou X, Xue YF, Wang K, Shen YF, Mao JJ, Guo HF, Miao ZN (2012) Increased frequency and clinical significance of myeloid-derived suppressor cells in human colorectal carcinoma. World J Gastroenterol 18(25):3303–3309

    PubMed  Google Scholar 

  117. Verschoor CP, Johnstone J, Millar J, Dorrington MG, Habibagahi M, Lelic A, Loeb M, Bramson JL, Bowdish DM (2013) Blood CD33(+)HLA-DR(-) myeloid-derived suppressor cells are increased with age and a history of cancer. J Leukoc Biol 93(4):633–637

    CAS  PubMed  Google Scholar 

  118. Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW (2011) Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother 60(10):1419–1430

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58(1):49–59

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Solito S, Falisi E, Diaz-Montero CM, Doni A, Pinton L, Rosato A, Francescato S, Basso G, Zanovello P, Onicescu G, Garrett-Mayer E, Montero AJ, Bronte V, Mandruzzato S (2011) A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood 118(8):2254–2265

    CAS  PubMed  Google Scholar 

  121. Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J, Sierra R, Ochoa AC (2009) Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res 69(4):1553–1560

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P, Golshayan A, Rayman PA, Wood L, Garcia J, Dreicer R, Bukowski R, Finke JH (2009) Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 15(6):2148–2157

    CAS  PubMed  Google Scholar 

  123. Filipazzi P, Huber V, Rivoltini L (2012) Phenotype, function and clinical implications of myeloid-derived suppressor cells in cancer patients. Cancer Immunol Immunother 61(2):255–263

    CAS  PubMed  Google Scholar 

  124. Vuk-Pavlovic S, Bulur PA, Lin Y, Qin R, Szumlanski CL, Zhao X, Dietz AB (2010) Immunosuppressive CD14+ HLA-DRlow/- monocytes in prostate cancer. Prostate 70(4):443–455

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Najjar YG, Finke JH (2013) Clinical perspectives on targeting of myeloid derived suppressor cells in the treatment of cancer. Frontiers Oncol 3:49

    Google Scholar 

  126. Montero AJ, Diaz-Montero CM, Deutsch YE, Hurley J, Koniaris LG, Rumboldt T, Yasir S, Jorda M, Garret-Mayer E, Avisar E, Slingerland J, Silva O, Welsh C, Schuhwerk K, Seo P, Pegram MD, Gluck S (2012) Phase 2 study of neoadjuvant treatment with NOV-002 in combination with doxorubicin and cyclophosphamide followed by docetaxel in patients with HER-2 negative clinical stage II–IIIc breast cancer. Breast Cancer Res Treat 132(1):215–223

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Raychaudhuri B, Rayman P, Ireland J, Ko J, Rini B, Borden EC, Garcia J, Vogelbaum MA, Finke J (2011) Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma. Neuro-oncology 13(6):591–599

    PubMed Central  PubMed  Google Scholar 

  128. Feng PH, Lee KY, Chang YL, Chan YF, Kuo LW, Lin TY, Chung FT, Kuo CS, Yu CT, Lin SM, Wang CH, Chou CL, Huang CD, Kuo HP (2012) CD14(+)S100A9(+) monocytic myeloid-derived suppressor cells and their clinical relevance in non-small cell lung cancer. Am J Respir Crit Care Med 186(10):1025–1036

    CAS  PubMed  Google Scholar 

  129. Zhang B, Wang Z, Wu L, Zhang M, Li W, Ding J, Zhu J, Wei H, Zhao K (2013) Circulating and tumor-infiltrating myeloid-derived suppressor cells in patients with colorectal carcinoma. PLoS ONE 8(2):e57114

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Malyguine AM, Strobl SL, Shurin MR (2012) Immunological monitoring of the tumor immunoenvironment for clinical trials. Cancer Immunol Immunother 61(2):239–247

    CAS  PubMed  Google Scholar 

  131. Galon J, Pages F, Marincola FM, Angell HK, Thurin M, Lugli A, Zlobec I, Berger A, Bifulco C, Botti G, Tatangelo F, Britten CM, Kreiter S, Chouchane L, Delrio P, Arndt H, Asslaber M, Maio M, Masucci GV, Mihm M, Vidal-Vanaclocha F, Allison JP, Gnjatic S, Hakansson L, Huber C, Singh-Jasuja H, Ottensmeier C, Zwierzina H, Laghi L, Grizzi F, Ohashi PS, Shaw PA, Clarke BA, Wouters BG, Kawakami Y, Hazama S, Okuno K, Wang E, O’Donnell-Tormey J, Lagorce C, Pawelec G, Nishimura MI, Hawkins R, Lapointe R, Lundqvist A, Khleif SN, Ogino S, Gibbs P, Waring P, Sato N, Torigoe T, Itoh K, Patel PS, Shukla SN, Palmqvist R, Nagtegaal ID, Wang Y, D’Arrigo C, Kopetz S, Sinicrope FA, Trinchieri G, Gajewski TF, Ascierto PA, Fox BA (2012) Cancer classification using the immunoscore: a worldwide task force. J Transl Med 10:205

    PubMed Central  PubMed  Google Scholar 

  132. Fridman WH, Galon J, Dieu-Nosjean MC, Cremer I, Fisson S, Damotte D, Pages F, Tartour E, Sautes-Fridman C (2011) Immune infiltration in human cancer: prognostic significance and disease control. Curr Top Microbiol Immunol 344:1–24

    CAS  PubMed  Google Scholar 

  133. Porembka MR, Mitchem JB, Belt BA, Hsieh CS, Lee HM, Herndon J, Gillanders WE, Linehan DC, Goedegebuure P (2012) Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-derived suppressor cells which promote primary tumor growth. Cancer Immunol Immunother 61(9):1373–1385

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Paez D, Labonte MJ, Bohanes P, Zhang W, Benhanim L, Ning Y, Wakatsuki T, Loupakis F, Lenz HJ (2012) Cancer dormancy: a model of early dissemination and late cancer recurrence. Clin Cancer Res 18(3):645–653

    PubMed  Google Scholar 

  135. Spano D, Zollo M (2012) Tumor microenvironment: a main actor in the metastasis process. Clin Exp Metastasis 29(4):381–395

    CAS  PubMed  Google Scholar 

  136. Sellitto A, Galizia G, De Fanis U, Lieto E, Zamboli A, Orditura M, De Vita F, Giunta R, Lucivero G, Romano C (2011) Behavior of circulating CD4+ CD25+ Foxp3+ regulatory T cells in colon cancer patients undergoing surgery. J Clin Immunol 31(6):1095–1104

    CAS  PubMed  Google Scholar 

  137. Naiditch H, Shurin MR, Shurin GV (2011) Targeting myeloid regulatory cells in cancer by chemotherapeutic agents. Immunol Res 50(2–3):276–285

    CAS  PubMed  Google Scholar 

  138. Shurin MR (2013) Dual role of immunomodulation by anticancer chemotherapy. Nat Med 19(1):20–22

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitriy W. Gutkin.

Additional information

This paper is a Focussed Research Review based on a presentation given at the Third International Conference on Cancer Immunotherapy and Immunomonitoring (CITIM 2013), held in Krakow, Poland, on 22–25 of April 2013. It is part of a CII series of Focussed Research Reviews and meeting report.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutkin, D.W., Shurin, M.R. Clinical evaluation of systemic and local immune responses in cancer: time for integration. Cancer Immunol Immunother 63, 45–57 (2014). https://doi.org/10.1007/s00262-013-1480-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-013-1480-0

Keywords

Navigation