Skip to main content

Advertisement

Log in

Efficient ex vivo induction of T cells with potent anti-tumor activity by protein antigen encapsulated in nanoparticles

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Protein antigen (Ag)-based immunotherapies have the advantage to induce T cells with a potentially broad repertoire of specificities. However, soluble protein Ag is generally poorly cross-presented in MHC class I molecules and not efficient in inducing robust cytotoxic CD8+ T cell responses. In the present study, we have applied poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP) which strongly improve protein Ag presentation by dendritic cells (DC) in the absence of additional Toll-like receptor ligands or targeting devices. Protein Ag-loaded DC were used as antigen presenting cells to stimulate T cells in vitro and subsequently analyzed in vivo for their anti-tumor effect via adoptive transfer, a treatment strategy widely studied in clinical trials as a therapy against various malignancies. In a direct comparison with soluble protein Ag, we show that DC presentation of protein encapsulated in plain PLGA-NP results in efficient activation of CD4+ and CD8+ T cells as reflected by high numbers of activated CD69+ and CD25+, interferon (IFN)-γ and interleukin (IL)-2-producing T cells. Adoptive transfer of PLGA-NP-activated CD8+ T cells in tumor-bearing mice displayed good in vivo expansion capacity, potent Ag-specific cytotoxicity and IFN-γ cytokine production, resulting in curing mice with established tumors. We conclude that delivery of protein Ag through encapsulation in plain PLGA-NP is a very efficient and simple procedure to stimulate potent anti-tumor T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252

    Article  PubMed  CAS  Google Scholar 

  2. Melief CJ (2008) Cancer immunotherapy by dendritic cells. Immunity 29(3):372–383

    Article  PubMed  CAS  Google Scholar 

  3. Steinman RM, Hemmi H (2006) Dendritic cells: translating innate to adaptive immunity. Curr Top Microbiol Immunol 311:17–58

    Article  CAS  Google Scholar 

  4. Petersen TR, Dickgreber N, Hermans IF (2010) Tumor antigen presentation by dendritic cells. Crit Rev Immunol 30(4):345–386

    Article  PubMed  CAS  Google Scholar 

  5. Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Sakaguchi K, Appella E, Yannelli JR, Adema GJ, Miki T, Rosenberg SA (1994) Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci USA 91(14):6458–6462

    Article  PubMed  CAS  Google Scholar 

  6. Ossendorp F, Mengede E, Camps M, Filius R, Melief CJ (1998) Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J Exp Med 187(5):693–702

    Article  CAS  Google Scholar 

  7. Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393(6684):480–483

    Article  PubMed  CAS  Google Scholar 

  8. Blachere NE, Morris HK, Braun D, Saklani H, Di Santo JP, Darnell RB, Albert ML (2006) IL-2 is required for the activation of memory CD8 + T cells via antigen cross-presentation. J Immunol 176(12):7288–7300

    PubMed  CAS  Google Scholar 

  9. Keene JA, Forman J (1982) Helper activity is required for the in vivo generation of cytotoxic T lymphocytes. J Exp Med 155(3):768–782

    Article  PubMed  CAS  Google Scholar 

  10. Mischo A, Bubel N, Cebon JS, Samaras P, Petrausch U, Stenner-Liewen F, Schaefer NG, Kubuschok B, Renner C, Wadle A (2011) Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad antibody responses in humans, a RAYS-based analysis. Int J Oncol 39(1):287–294

    PubMed  CAS  Google Scholar 

  11. Sang M, Lian Y, Zhou X, Shan B (2011) MAGE-A family: attractive targets for cancer immunotherapy. Vaccine 29(47):8496–8500

    Article  PubMed  CAS  Google Scholar 

  12. Zandvliet ML, van Liempt E, Jedema I, Veltrop-Duits LA, Willemze R, Guchelaar HJ, Falkenburg JH, Meij P (2010) Co-ordinated isolation of CD8(+) and CD4(+) T cells recognizing a broad repertoire of cytomegalovirus pp 65 and IE1 epitopes for highly specific adoptive immunotherapy. Cytotherapy 12(7):933–944

    Article  PubMed  CAS  Google Scholar 

  13. Zhang H, Hong H, Li D, Ma S, Di Y, Stoten A, Di Haig N, Gleria K, Yu Z, Xu XN, McMichael A, Jiang S (2009) Comparing pooled peptides with intact protein for accessing cross-presentation pathways for protective CD8 + and CD4 + T cells. J Biol Chem 284(14):9184–9191

    Article  PubMed  CAS  Google Scholar 

  14. Newman KD, Samuel J, Kwon G (1998) Ovalbumin peptide encapsulated in poly(d, l lactic-co-glycolic acid) microspheres is capable of inducing a T helper type 1 immune response. J Control Release 54(1):49–59

    Article  PubMed  CAS  Google Scholar 

  15. Waeckerle-Men Y, Gander B, Groettrup M (2005) Delivery of tumor antigens to dendritic cells using biodegradable microspheres. Methods Mol Med 109:35–46

    PubMed  CAS  Google Scholar 

  16. Zhang Z, Tongchusak S, Mizukami Y, Kang YJ, Ioji T, Touma M, Reinhold B, Keskin DB, Reinherz EL, Sasada T (2011) Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials 32(14):3666–3678

    Article  PubMed  CAS  Google Scholar 

  17. Gilding DK, Reed AM (1979) Biodegradable polymers for use in surgery—polyglycolic/poly(lactic acid) homo- and copolymers: 1. Polymer 20(12):1459–1464

    Article  CAS  Google Scholar 

  18. Mahapatro A, Singh DK (2011) Biodegradable nanoparticles are excellent vehicle for site directed in vivo delivery of drugs and vaccines. J Nanobiotechnol 9:55

    Article  CAS  Google Scholar 

  19. Jain AK, Das M, Swarnakar NK, Jain S (2011) Engineered PLGA nanoparticles: an emerging delivery tool in cancer therapeutics. Crit Rev Ther Drug Carr Syst 28(1):1–45

    Article  CAS  Google Scholar 

  20. Hamdy S, Haddadi A, Hung RW, Lavasanifar A (2011) Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv Drug Deliv Rev 63(10–11):943–955

    Article  PubMed  CAS  Google Scholar 

  21. Shen H, Ackerman AL, Cody V, Giodini A, Hinson ER, Cresswell P, Edelson RL, Saltzman WM, Hanlon DJ (2006) Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 117(1):78–88

    Article  PubMed  CAS  Google Scholar 

  22. Schlosser E, Mueller M, Fischer S, Basta S, Busch DH, Gander B, Groettrup M (2008) TLR ligands and antigen need to be coencapsulated into the same biodegradable microsphere for the generation of potent cytotoxic T lymphocyte responses. Vaccine 26(13):1626–1637

    Article  PubMed  CAS  Google Scholar 

  23. Demento SL, Eisenbarth SC, Foellmer HG, Platt C, Caplan MJ, Mark Saltzman W, Mellman I, Ledizet M, Fikrig E, Flavell RA, Fahmy TM (2009) Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy. Vaccine 27(23):3013–3021

    Article  PubMed  CAS  Google Scholar 

  24. Yoshida M, Mata J, Babensee JE (2007) Effect of poly(lactic-co-glycolic acid) contact on maturation of murine bone marrow-derived dendritic cells. J Biomed Mater Res A 80(1):7–12

    PubMed  Google Scholar 

  25. Han H, Peng JR, Chen PC, Gong L, Qiao SS, Wang WZ, Cui ZQ, Yu X, Wei YH, Leng XS (2011) A novel system of artificial antigen-presenting cells efficiently stimulates Flu peptide-specific cytotoxic T cells in vitro. Biochem Biophys Res Commun 411(3):530–535

    Article  PubMed  CAS  Google Scholar 

  26. Steenblock ER, Fahmy TM (2008) A comprehensive platform for ex vivo T-cell expansion based on biodegradable polymeric artificial antigen-presenting cells. Mol Ther 16(4):765–772

    Article  PubMed  CAS  Google Scholar 

  27. Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12(4):265–277

    Article  PubMed  CAS  Google Scholar 

  28. Steinman RM (2012) Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 30:1–22

    Article  PubMed  CAS  Google Scholar 

  29. Rosenberg SA, Dudley ME (2009) Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol 21(2):233–240

    Article  PubMed  CAS  Google Scholar 

  30. Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12(4):269–281

    Article  PubMed  CAS  Google Scholar 

  31. Winzler C, Rovere P, Rescigno M, Granucci F, Penna G, Adorini L, Zimmermann VS, Davoust J, Ricciardi-Castagnoli P (1997) Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J Exp Med 185(2):317–328

    Article  PubMed  CAS  Google Scholar 

  32. Schuurhuis DH, Ioan-Facsinay A, Nagelkerken B, van Schip JJ, Sedlik C, Melief CJ, Verbeek JS, Ossendorp F (2002) Antigen-antibody immune complexes empower dendritic cells to efficiently prime specific CD8 + CTL responses in vivo. J Immunol 168(5):2240–2246

    PubMed  CAS  Google Scholar 

  33. Sanderson S, Shastri N (1994) LacZ inducible, antigen/MHC-specific T cell hybrids. Int Immunol 6(3):369–376

    Article  PubMed  CAS  Google Scholar 

  34. Moore MW, Carbone FR, Bevan MJ (1988) Introduction of soluble protein into the class I pathway of antigen processing and presentation. Cell 54(6):777–785

    Article  PubMed  CAS  Google Scholar 

  35. Slutter B, Bal S, Keijzer C, Mallants R, Hagenaars N, Que I, Kaijzel E, van Eden W, Augustijns P, Lowik C, Bouwstra J, Broere F, Jiskoot W (2010) Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine 28(38):6282–6291

    Article  PubMed  Google Scholar 

  36. Hamdy S, Haddadi A, Shayeganpour A, Samuel J, Lavasanifar A (2011) Activation of antigen-specific T cell-responses by mannan-decorated PLGA nanoparticles. Pharm Res 28(9):2288–2301

    Article  PubMed  CAS  Google Scholar 

  37. Mueller M, Schlosser E, Gander B, Groettrup M (2011) Tumor eradication by immunotherapy with biodegradable PLGA microspheres—an alternative to incomplete Freund’s adjuvant. Int J Cancer 129(2):407–416

    Article  PubMed  CAS  Google Scholar 

  38. Tacken PJ, Zeelenberg IS, Cruz LJ, van Hout-Kuijer MA, van de Glind G, Fokkink RG, Lambeck AJ, Figdor CG (2011) Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity. Blood 118(26):6836–6844

    Article  CAS  Google Scholar 

  39. Klebanoff CA, Gattinoni L, Palmer DC, Muranski P, Ji Y, Hinrichs CS, Borman ZA, Kerkar SP, Scott CD, Finkelstein SE, Rosenberg SA, Restifo NP (2011) Determinants of successful CD8 + T-cell adoptive immunotherapy for large established tumors in mice. Clin Cancer Res 17(16):5343–5352

    Article  PubMed  CAS  Google Scholar 

  40. Montagna D, Turin I, Schiavo R, Montini E, Zaffaroni N, Villa R, Secondino S, Schiavetto I, Caliogna L, Locatelli F, Libri V, Pession A, Tonelli R, Maccario R, Siena S, Pedrazzoli P (2012) Feasibility and safety of adoptive immunotherapy with ex vivo-generated autologous, cytotoxic T lymphocytes in patients with solid tumor. Cytotherapy. 14(1):80–90

    Article  PubMed  CAS  Google Scholar 

  41. Boyman O, Sprent J (2012) The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol 12(3):180–190

    PubMed  CAS  Google Scholar 

  42. Boyman O, Purton JF, Surh CD, Sprent J (2007) Cytokines and T-cell homeostasis. Curr Opin Immunol 19(3):320–326

    Article  PubMed  CAS  Google Scholar 

  43. Denoeud J, Moser M (2011) Role of CD27/CD70 pathway of activation in immunity and tolerance. J Leukoc Biol 89(2):195–203

    Article  PubMed  CAS  Google Scholar 

  44. Gerdes N, Zirlik A (2011) Co-stimulatory molecules in and beyond co-stimulation—tipping the balance in atherosclerosis? Thromb Haemost 106(5):804–813

    Article  PubMed  CAS  Google Scholar 

  45. Schreiber TH, Wolf D, Bodero M, Gonzalez L, Podack ER (2012) T cell costimulation by TNFR superfamily (TNFRSF)4 and TNFRSF25 in the context of vaccination. J Immunol 189(7):3311–3318

    Article  PubMed  CAS  Google Scholar 

  46. Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3(2):133–146

    Article  PubMed  CAS  Google Scholar 

  47. Turtle CJ, Riddell SR (2010) Artificial antigen-presenting cells for use in adoptive immunotherapy. Cancer J 16(4):374–381

    Article  PubMed  CAS  Google Scholar 

  48. Gattinoni L, Powell DJ Jr, Rosenberg SA, Restifo NP (2006) Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 6(5):383–393

    Article  PubMed  CAS  Google Scholar 

  49. Dudley ME, Wunderlich JR, Shelton TE, Even J, Rosenberg SA (2003) Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J Immunother 26(4):332–342

    Article  PubMed  Google Scholar 

  50. Ho WY, Nguyen HN, Wolfl M, Kuball J, Greenberg PD (2006) In vitro methods for generating CD8 + T-cell clones for immunotherapy from the naive repertoire. J Immunol Methods 310(1–2):40–52

    Article  PubMed  CAS  Google Scholar 

  51. Le HK, Graham L, Miller CH, Kmieciak M, Manjili MH, Bear HD (2009) Incubation of antigen-sensitized T lymphocytes activated with bryostatin 1 + ionomycin in IL-7 + IL-15 increases yield of cells capable of inducing regression of melanoma metastases compared to culture in IL-2. Cancer Immunol Immunother 58(10):1565–1576

    Article  PubMed  CAS  Google Scholar 

  52. Budd RC (2001) Activation-induced cell death. Curr Opin Immunol 13(3):356–362

    Article  PubMed  CAS  Google Scholar 

  53. Green DR, Droin N, Pinkoski M (2003) Activation-induced cell death in T cells. Immunol Rev 193:70–81

    Article  PubMed  CAS  Google Scholar 

  54. Dobrzanski MJ, Reome JB, Hollenbaugh JA, Dutton RW (2004) Tc1 and Tc2 effector cell therapy elicit long-term tumor immunity by contrasting mechanisms that result in complementary endogenous type 1 antitumor responses. J Immunol 172(3):1380–1390

    PubMed  CAS  Google Scholar 

  55. Garcia-Hernandez MdeL, Hamada H, Reome JB, Misra SK, Tighe MP, Dutton RW (2010) Adoptive transfer of tumor-specific Tc17 effector T cells controls the growth of B16 melanoma in mice. J Immunol 184(8):4215–4227

    Article  CAS  Google Scholar 

  56. Hinrichs CS, Spolski R, Paulos CM, Gattinoni L, Kerstann KW, Palmer DC, Klebanoff CA, Rosenberg SA, Leonard WJ, Restifo NP (2008) IL-2 and IL-21 confer opposing differentiation programs to CD8 + T cells for adoptive immunotherapy. Blood 111(11):5326–5333

    Article  PubMed  CAS  Google Scholar 

  57. Waldmann TA (2006) The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol 6(8):595–601

    Article  PubMed  CAS  Google Scholar 

  58. de Vos van Steenwijk PJ, Heusinkveld M, Ramwadhdoebe TH, Lowik MJ, van der Hulst JM, Goedemans R, Piersma SJ, Kenter GG, van der Burg SH (2010) An unexpectedly large polyclonal repertoire of HPV-specific T cells is poised for action in patients with cervical cancer. Cancer Res 70(7):2707–2717

    Article  Google Scholar 

  59. Piersma SJ, Welters MJ, van der Hulst JM, Kloth JN, Kwappenberg KM, Trimbos BJ, Melief CJ, Hellebrekers BW, Fleuren GJ, Kenter GG, Offringa R, van der Burg SH (2008) Human papilloma virus specific T cells infiltrating cervical cancer and draining lymph nodes show remarkably frequent use of HLA-DQ and -DP as a restriction element. Int J Cancer 122(3):486–494

    Article  PubMed  CAS  Google Scholar 

  60. Hunder NN, Wallen H, Cao J, Hendricks DW, Reilly JZ, Rodmyre R, Jungbluth A, Gnjatic S, Thompson JA, Yee C (2008) Treatment of metastatic melanoma with autologous CD4 + T cells against NY-ESO-1. N Engl J Med 358(25):2698–2703

    Article  PubMed  CAS  Google Scholar 

  61. Prior S, Gander B, Blarer N, Merkle HP, Subira ML, Irache JM, Gamazo C (2002) In vitro phagocytosis and monocyte-macrophage activation with poly(lactide) and poly(lactide-co-glycolide) microspheres. Eur J Pharm Sci 15(2):197–207

    Article  PubMed  CAS  Google Scholar 

  62. Yoshida M, Babensee JE (2006) Differential effects of agarose and poly(lactic-co-glycolic acid) on dendritic cell maturation. J Biomed Mater Res A 79(2):393–408

    PubMed  Google Scholar 

  63. Schliehe C, Schliehe C, Thiry M, Tromsdorf UI, Hentschel J, Weller H, Groettrup M (2011) Microencapsulation of inorganic nanocrystals into PLGA microsphere vaccines enables their intracellular localization in dendritic cells by electron and fluorescence microscopy. J Control Release 151(3):278–285

    Article  PubMed  CAS  Google Scholar 

  64. van Montfoort N, Camps MG, Khan S, Filippov DV, Weterings JJ, Griffith JM, Geuze HJ, van Hall T, Verbeek JS, Melief CJ, Ossendorp F (2009) Antigen storage compartments in mature dendritic cells facilitate prolonged cytotoxic T lymphocyte cross-priming capacity. Proc Natl Acad Sci USA 106(16):6730–6735

    Article  PubMed  Google Scholar 

  65. Coulie PG, Connerotte T (2005) Human tumor-specific T lymphocytes: does function matter more than number? Curr Opin Immunol 17(3):320–325

    Article  PubMed  CAS  Google Scholar 

  66. Welters MJ, Kenter GG, de Vos van Steenwijk PJ, Lowik MJ, Berends-van der Meer DM, Essahsah F, Stynenbosch LF, Vloon AP, Ramwadhdoebe TH, Piersma SJ, van der Hulst JM, Valentijn AR, Fathers LM, Drijfhout JW, Franken KL, Oostendorp J, Fleuren GJ, Melief CJ, van der Burg SH (2010) Success or failure of vaccination for HPV16-positive vulvar lesions correlates with kinetics and phenotype of induced T-cell responses. Proc Natl Acad Sci USA 107(26):11895–11899

  67. Bos R, Sherman LA (2010) CD4 + T-cell help in the tumor milieu is required for recruitment and cytolytic function of CD8 + T lymphocytes. Cancer Res 70(21):8368–8377

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Immune System Activation (ISA) Pharmaceuticals, University of Leiden and the Leiden University Medical Center. We thank Ing. S. Marlina Sibuea for the studies performed to determine the release kinetics of the protein from the PLGA-NP and Ing. W.M.Ramp-Koopmanschap for the analysis of endotoxin levels of the formulated PLGA-OVA batches.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferry Ossendorp.

Additional information

Ferry Ossendorp, Jaap Oostendorp contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosalia, R.A., Silva, A.L., Camps, M. et al. Efficient ex vivo induction of T cells with potent anti-tumor activity by protein antigen encapsulated in nanoparticles. Cancer Immunol Immunother 62, 1161–1173 (2013). https://doi.org/10.1007/s00262-013-1411-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-013-1411-0

Keywords

Navigation