Skip to main content
Log in

Differential effects of low-dose decitabine on immune effector and suppressor responses in melanoma-bearing mice

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

Low doses of the demethylating agent decitabine have been shown to enhance the sensitivity of tumors to immune effector cells and molecules through upregulation of tumor antigen presentation and apoptotic pathways. Effects on host immune effector and suppressor responses have not been well characterized.

Methods

Mice bearing B16 melanoma were treated with low-dose decitabine, cytokine, interleukin-2 (IL-2), toll-like receptor 9 agonist ODN1826, and/or a viral vectored vaccine targeting the melanoma antigen Trp2. Lymphoid and myeloid effector and suppressor cells were examined both systemically and intratumorally with functional, flow cytometric, and polymerase chain reaction–based assays.

Results

Enhancement of tumor growth delay was observed when decitabine was applied sequentially but not concurrently with IL-2. In contrast, complete responses and prolonged survival were observed when decitabine was applied with ODN1826 as therapy and with ODN1826 as a Trp2 vaccine adjuvant. Decitabine decreased natural killer and antigen-specific cellular immune responses when administered concurrently with IL-2 and with ODN1826; the Th1-associated transcription factor Tbet also decreased. T regulatory cells were not affected. When applied concurrently with ODN1826, decitabine increased macrophage cytotoxicity, M1 polarization, and dendritic cell activation. Myeloid-derived suppressor cells were reduced.

Conclusion

Low-dose decitabine promotes both anti- and pro-tumor host immune responses to immunotherapeutics in melanoma-bearing mice. Macrophage effector and dendritic cell activation increase, and myeloid suppressor cells decrease. Lymphoid effector responses, however, can be inhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Serrano A, Tanzarella S, Lionello I, Mendez R, Traversari C, Ruiz-Cabello F, Garrido F (2001) Re-expression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2′-deoxycytidine treatment. Int J Cancer 94:243–251

    Article  PubMed  CAS  Google Scholar 

  2. Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, Opitz-Araya X, McCombie R, Herman JG, Gerald WL, Lazebnik YA, Cordón-Cardó C, Lowe SW (2001) Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409:207–211

    Article  PubMed  CAS  Google Scholar 

  3. Tomasi TB, Magner WJ, Khan AN (2006) Epigenetic regulation of immune escape genes in cancer. Cancer Immunol Immunother 55:1159–1184

    Article  PubMed  Google Scholar 

  4. Gollob JA, Sciambi CJ, Peterson BL, Richmond T, Thoreson M, Moran K, Dressman HK, Jelinek J, Issa JP (2006) Phase I trial of sequential low-dose 5-aza-2′-deoxycytidine plus high-dose intravenous bolus interleukin-2 in patients with melanoma or renal cell carcinoma. Clin Cancer Res 12:4619–4627

    Article  PubMed  CAS  Google Scholar 

  5. http://clinicaltrials.gov/ct2/show/NCT00791271

  6. Kozar K, Kamiński R, Switaj T, Ołdak T, Machaj E, Wysocki PJ, Mackiewicz A, Lasek W, Jakóbisiak M, Gołab J (2003) Interleukin 12-based immunotherapy improves the antitumor effectiveness of a low-dose 5-Aza-2′-deoxycitidine treatment in L1210 leukemia and B16F10 melanoma models in mice. Clin Cancer Res 9:3124–3133

    PubMed  CAS  Google Scholar 

  7. Lu D, Hoory T, Monie A, Wu A, Wang MC, Hung CF (2009) Treatment with demethylating agent, 5-aza-2′-deoxycytidine enhances therapeutic HPV DNA vaccine potency. Vaccine 27:4363–4369

    Article  PubMed  CAS  Google Scholar 

  8. Sánchez-Abarca LI, Gutierrez-Cosio S, Santamaría C, Caballero-Velazquez T, Blanco B, Herrero-Sánchez C, García JL, Carrancio S, Hernández-Campo P, González FJ, Flores T, Ciudad L, Ballestar E, Del Cañizo C, San Miguel JF, Pérez-Simon JA (2010) Immunomodulatory effect of 5-azacytidine (5-azaC): potential role in the transplantation setting. Blood 115:107–121

    Article  PubMed  Google Scholar 

  9. Santourlidis S, Trompeter HI, Weinhold S, Eisermann B, Meyer KL, Wernet P, Uhrberg M (2002) Crucial role of DNA methylation in determination of clonally distributed killer cell Ig-like receptor expression patterns in NK cells. J Immunol 169:4253–4261

    PubMed  CAS  Google Scholar 

  10. Kim HP, Leonard WJ (2007) CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J Exp Med 204:1543–1551

    PubMed  CAS  Google Scholar 

  11. Zorn E, Nelson EA, Mohseni M, Porcheray F, Kim H, Litsa D, Bellucci R, Raderschall E, Canning C, Soiffer RJ, Frank DA, Ritz J (2006) IL-2 regulates FOXP3 expression in human CD4+ CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood 108:1571–1579

    Article  PubMed  CAS  Google Scholar 

  12. Choi J, Ritchey J, Prior JL, Holt M, Shannon WD, Deych E, Piwnica-Worms DR, DiPersio JF (2010) In vivo administration of hypomethylating agents mitigate graft-versus-host disease without sacrificing graft-versus-leukemia. Blood 116:129–139

    Article  PubMed  CAS  Google Scholar 

  13. Ogbomo H, Michaelis M, Kreuter J, Doerr HW, Cinatl J Jr (2007) Histone deacetylase inhibitors suppress natural killer cell cytolytic activity. FEBS Lett 581:1317–1322

    Article  PubMed  CAS  Google Scholar 

  14. Liu Y, Kuick R, Hanash S, Richardson B (2009) DNA methylation inhibition increases T cell KIR expression through effects on both promoter methylation and transcription factors. Clin Immunol 130:213–224

    Article  PubMed  CAS  Google Scholar 

  15. Moreira JM, Scheipers P, Sorensen P (2003) The histone deacetylase inhibitor trichostatin A modulates CD4+ T cell responses. BMC Cancer (http://www.biomedcentral.com/1471-2407/3/30)

  16. Lal G, Zhang N, van der Touw W, Ding Y, Ju W, Bottinger EP, Reid SP, Levy DE, Bromberg JS (2009) Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol 182:259–273

    PubMed  CAS  Google Scholar 

  17. Brogdon JL, Xu Y, Szabo SJ, An S, Buxton F, Cohen D, Huang Q (2007) Histone deacetylase activities are required for innate immune cell control of Th1 but not Th2 effector cell function. Blood 109:1123–1130

    Article  PubMed  CAS  Google Scholar 

  18. Kozlowska A, Jagodzinski PP (2006) Effect of trichostatin A on CD4 surface density in peripheral blood T cells. Folia Histochem Cytobiol 44:259–262

    PubMed  CAS  Google Scholar 

  19. Guo L, Hu-Li J, Zhu J, Watson CJ, Difilippantonio MJ, Pannetier C, Paul WE (2002) In TH2 cells the Il4 gene has a series of accessibility states associated with distinctive probabilities of IL-4 production. Proc Natl Acad Sci USA 99:10623–10628

    Article  PubMed  CAS  Google Scholar 

  20. Villagra A, Cheng F, Wang HW, Suarez I, Glozak M, Maurin M, Nguyen D, Wright KL, Atadja PW, Bhalla K, Pinilla-Ibarz J, Seto E, Sotomayor EM (2008) The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol 10:92–100

    Article  PubMed  Google Scholar 

  21. Fourcade J, Kudela P, Andrade Filho PA, Janjic B, Land SR, Sander C, Krieg A, Donnenberg A, Shen H, Kirkwood JM, Zarour HM (2008) Immunization with analog peptide in combination with CpG and montanide expands tumor antigen-specific CD8+ T cells in melanoma patients. J Immunother 31:781–791

    Article  PubMed  CAS  Google Scholar 

  22. Pashenkov M, Goëss G, Wagner C, Hörmann M, Jandl T, Moser A, Britten CM, Smolle J, Koller S, Mauch C, Tantcheva-Poor I, Grabbe S, Loquai C, Esser S, Franckson T, Schneeberger A, Haarmann C, Krieg AM, Stingl G, Wagner SN (2006) Phase II trial of a toll-like receptor 9-activating oligonucleotide in patients with metastatic melanoma. J Clin Oncol 24:5716–5724

    Article  PubMed  CAS  Google Scholar 

  23. Krieg AM (2006) Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov 5:471–484

    Article  PubMed  CAS  Google Scholar 

  24. Triozzi PL, Aldrich A, Ponnazhagan S (2010) Regulation of the activity of an adeno-associated virus vector cancer vaccine administered with synthetic Toll-like receptor agonists. Vaccine 28:7837–7843

    Article  PubMed  CAS  Google Scholar 

  25. Press RD, Galderisi C, Yang R, Rempfer C, Willis SG, Mauro MJ, Druker BJ, Deininger MW (2007) A half-log increase in BCR-ABL RNA predicts a higher risk of relapse in patients with chronic myeloid leukemia with an imatinib-induced complete cytogenetic response. Clin Cancer Res 13:6136–6143

    Article  PubMed  CAS  Google Scholar 

  26. Alcazar O, Achberger S, Aldrich W, Hu Z, Negrotto S, Saunthararajah Y, Triozzi PL (2011) Epigenetic regulation of melanoma differentiation in vitro and in vivo. doi:10.1002/ijc.26320

  27. Rothhammer T, Bosserhoff AK (2007) Epigenetic events in malignant melanoma. Pigment Cell Res 20:92–111

    Article  PubMed  CAS  Google Scholar 

  28. Buhtoiarov IN, Sondel PM, Eickhoff JC, Rakhmilevich AL (2007) Macrophages are essential for antitumour effects against weakly immunogenic murine tumours induced by class B CpG-oligodeoxynucleotides. Immunology 120:412–423

    Article  PubMed  CAS  Google Scholar 

  29. Koschmieder S, Agrawal S, Radomska HS, Huettner CS, Tenen DG, Ottmann OG, Berdel WE, Serve HL, Müller-Tidow C (2007) Decitabine and vitamin D3 differentially affect hematopoietic transcription factors to induce monocytic differentiation. Int J Oncol 30:349–355

    PubMed  CAS  Google Scholar 

  30. Laurenzana A, Petruccelli LA, Pettersson F, Figueroa ME, Melnick A, Baldwin AS, Paoletti F, Miller WH Jr (2009) Inhibition of DNA methyltransferase activates tumor necrosis factor alpha-induced monocytic differentiation in acute myeloid leukemia cells. Cancer Res 69:55–64

    Article  PubMed  CAS  Google Scholar 

  31. Daurkin I, Eruslanov E, Vieweg J, Kusmartsev S (2010) Generation of antigen-presenting cells from tumor-infiltrated CD11b myeloid cells with DNA demethylating agent 5-aza-2′-deoxycytidine. Cancer Immunol Immunother 59:697–706

    Article  PubMed  CAS  Google Scholar 

  32. Schmiedel BJ, Arélin V, Gruenebach F, Krusch M, Schmidt SM, Salih HR (2011) Azacytidine impairs NK cell reactivity while decitabine augments NK cell responsiveness toward stimulation. Int J Cancer 128:2911–2922

    Article  PubMed  CAS  Google Scholar 

  33. Schmudde M, Friebe E, Sonnemann J, Beck JF, Bröker BM (2010) Histone deacetylase inhibitors prevent activation of tumour-reactive NK cells and T cells but do not interfere with their cytolytic effector functions. Cancer Lett 295:173–181

    Article  PubMed  CAS  Google Scholar 

  34. Moon C, Kim SH, Park KS, Choi BK, Lee HS, Park JB, Choi GS, Kwan JH, Joh JW, Kim SJ (2009) Use of epigenetic modification to induce FOXP3 expression in naïve T cells. Transplant Proc 41:1848–1854

    Article  PubMed  CAS  Google Scholar 

  35. Werneck MB, Lugo-Villarino G, Hwang ES, Cantor H, Glimcher LH (2008) T-bet plays a key role in NK-mediated control of melanoma metastatic disease. J Immunol 180:8004–8010

    PubMed  CAS  Google Scholar 

  36. Kato Y, Yoshimura K, Shin T, Verheul H, Hammers H, Sanni TB, Salumbides BC, Van Erp K, Schulick R, Pili R (2007) Synergistic in vivo antitumor effect of the histone deacetylase inhibitor MS-275 in combination with interleukin 2 in a murine model of renal cell carcinoma. Clin Cancer Res 13(15 Pt 1):4538–4546

    Article  PubMed  CAS  Google Scholar 

  37. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    Article  PubMed  CAS  Google Scholar 

  38. Santoso B, Ortiz BD, Winoto A (2000) Control of organ-specific demethylation by an element of the T-cell receptor-alpha locus control region. J Biol Chem 275:1952–1958

    Article  PubMed  CAS  Google Scholar 

  39. Rehli M (2002) Of mice and men: species variations of Toll-like receptor expression. Trends Immunol 23:375–378

    Article  PubMed  CAS  Google Scholar 

  40. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 10:987–995

    Article  Google Scholar 

  41. Sica A, Saccani A, Bottazzi B, Polentarutti N, Vecchi A, van Damme J, Mantovani A (2000) Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages. J Immunol 164:762–767

    PubMed  CAS  Google Scholar 

  42. Clarke JH, Cha JY, Walsh MD, Gamboni-Robertson F, Banerjee A, Reznikov LL, Dinarello CA, Harken AH, McCarter MD (2005) Melanoma inhibits macrophage activation by suppressing toll-like receptor 4 signaling. J Am Coll Surg 201:418–425

    Article  PubMed  Google Scholar 

  43. Wang YC, He F, Feng F, Liu XW, Dong GY, Qin HY, Hu XB, Zheng MH, Liang L, Feng L, Liang YM, Han H (2010) Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res 70:4840–4849

    Article  PubMed  CAS  Google Scholar 

  44. Hara I, Nguyen H, Takechi Y, Gansbacher B, Chapman PB, Houghton AN (1995) Rejection of mouse melanoma elicited by local secretion of interleukin-2: implicating macrophages without T cells or natural killer cells in tumor rejection. Int J Cancer 61:253–260

    Article  PubMed  CAS  Google Scholar 

  45. Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181:5791–5802

    PubMed  CAS  Google Scholar 

  46. Melencio L, McKallip RJ, Guan H, Ramakrishnan R, Jain R, Nagarkatti PS, Nagarkatti M (2006) Role of CD4(+)CD25(+) T regulatory cells in IL-2-induced vascular leak. Int Immunol 18:1461–1471

    Article  PubMed  CAS  Google Scholar 

  47. Piras F, Colombari R, Minerba L, Murtas D, Floris C, Maxia C, Corbu A, Perra MT, Sirigu P (2005) The predictive value of CD8, CD4, CD68, and human leukocyte antigen-D-related cells in the prognosis of cutaneous malignant melanoma with vertical growth phase. Cancer 104:1246–1254

    Article  PubMed  CAS  Google Scholar 

  48. Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M, Castelli C, Mariani L, Parmiani G, Rivoltini L (2007) Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony stimulation factor-based antitumor vaccine. J Clin Oncol 25:2546–2553

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grants R01CA118660.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre L. Triozzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Triozzi, P.L., Aldrich, W., Achberger, S. et al. Differential effects of low-dose decitabine on immune effector and suppressor responses in melanoma-bearing mice. Cancer Immunol Immunother 61, 1441–1450 (2012). https://doi.org/10.1007/s00262-012-1204-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-012-1204-x

Keywords

Navigation