Skip to main content

Advertisement

Log in

Collective action of hematopoietic cell subsets mediates anti-IL10R1 and CpG tumor immunity

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Based on the specificity of antigen recognition and the ability to generate long-lived memory responses, cancer immunotherapies primarily target tumor-associated T cells. Systemic administration of anti-IL-10R1 antibody in combination with local CpG administration has been shown to induce tumor regression in a T-cell-dependent manner. Here, we confirmed the anti-tumor efficacy of anti-IL-10R1 and CpG therapy in the highly aggressive B16F10 melanoma model. However, T cells were not required for tumor growth inhibition. Through cellular depletions and genetic models of leukocyte deficiency, we demonstrated that T, B, and NK cells, and neutrophils are not essential for anti-tumor efficacy. Nevertheless, hematopoietic cells as a whole are required for anti-IL-10R1- and CpG-induced tumor growth inhibition, suggesting that the collective action of multiple subsets of hematopoietic-derived cells is required for anti-tumor efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang L et al (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348(3):203–213

    Article  PubMed  CAS  Google Scholar 

  2. Galon J et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964

    Article  PubMed  CAS  Google Scholar 

  3. Clemente CG et al (1996) Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 77(7):1303–1310

    Article  PubMed  CAS  Google Scholar 

  4. Atkins MB et al (1999) High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 17(7):2105–2116

    PubMed  CAS  Google Scholar 

  5. Legha SS (1997) Durable complete responses in metastatic melanoma treated with interleukin-2 in combination with interferon alpha and chemotherapy. Semin Oncol 24(1 Suppl 4):S39–S43

    PubMed  CAS  Google Scholar 

  6. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10(9):909–915

    Article  PubMed  CAS  Google Scholar 

  7. de Waal Malefyt R et al (1991) Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med 174(4):915–924

    Article  PubMed  Google Scholar 

  8. de Waal Malefyt R, Yssel H, de Vries JE (1993) Direct effects of IL-10 on subsets of human CD4+ T cell clones and resting T cells. Specific inhibition of IL-2 production and proliferation. J Immunol 150(11):4754–4765

    PubMed  Google Scholar 

  9. Vicari AP et al (2002) Reversal of tumor-induced dendritic cell paralysis by CpG immunostimulatory oligonucleotide and anti-interleukin 10 receptor antibody. J Exp Med 196(4):541–549

    Article  PubMed  CAS  Google Scholar 

  10. Lattime EC et al (1995) Expression of cytokine mRNA in human melanoma tissues. Cancer Immunol Immunother 41(3):151–156

    Article  PubMed  CAS  Google Scholar 

  11. Kruger-Krasagakes S et al (1994) Expression of interleukin 10 in human melanoma. Br J Cancer 70(6):1182–1185

    Article  PubMed  CAS  Google Scholar 

  12. Schebesch C et al (1997) Alternatively activated macrophages actively inhibit proliferation of peripheral blood lymphocytes and CD4+ T cells in vitro. Immunology 92(4):478–486

    Article  PubMed  CAS  Google Scholar 

  13. Huang B et al (2006) Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66(2):1123–1131

    Article  PubMed  CAS  Google Scholar 

  14. Itakura E et al (2011) IL-10 expression by primary tumor cells correlates with melanoma progression from radial to vertical growth phase and development of metastatic competence. Mod Pathol 24(6):801–809

    Google Scholar 

  15. Kortylewski M et al (2005) Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11(12):1314–1321

    Article  PubMed  CAS  Google Scholar 

  16. Krieg AM (2007) Development of TLR9 agonists for cancer therapy. J Clin Invest 117(5):1184–1194

    Article  PubMed  CAS  Google Scholar 

  17. Dillon S et al (2004) A Toll-like receptor 2 ligand stimulates Th2 responses in vivo, via induction of extracellular signal-regulated kinase mitogen-activated protein kinase and c-Fos in dendritic cells. J Immunol 172(8):4733–4743

    PubMed  CAS  Google Scholar 

  18. Martin M et al (2005) Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol 6(8):777–784

    Article  PubMed  CAS  Google Scholar 

  19. Rivas JM, Ullrich SE (1992) Systemic suppression of delayed-type hypersensitivity by supernatants from UV-irradiated keratinocytes. An essential role for keratinocyte-derived IL-10. J Immunol 149(12):3865–3871

    PubMed  CAS  Google Scholar 

  20. Mempel M et al (2003) Toll-like receptor expression in human keratinocytes: nuclear factor kappaB controlled gene activation by Staphylococcus aureus is toll-like receptor 2 but not toll-like receptor 4 or platelet activating factor receptor dependent. J Invest Dermatol 121(6):1389–1396

    Article  PubMed  CAS  Google Scholar 

  21. Kortylewski M et al (2009) Toll-like receptor 9 activation of signal transducer and activator of transcription 3 constrains its agonist-based immunotherapy. Cancer Res 69(6):2497–2505

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Andres Paler-Martinez for assistance with Luminex data, Wenjun Ouyang for providing il10r1 −/− mice, and Ira Mellman for scientific discussions. All authors are employees at Genentech, a member of the Roche Group. The authors declare no additional financial conflicts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong M. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, MY., Austin, C.D. & Kim, J.M. Collective action of hematopoietic cell subsets mediates anti-IL10R1 and CpG tumor immunity. Cancer Immunol Immunother 61, 1055–1064 (2012). https://doi.org/10.1007/s00262-011-1175-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1175-3

Keywords

Navigation