Skip to main content

Advertisement

Log in

Tipifarnib-mediated suppression of T-bet-dependent signaling pathways

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Large granular lymphocyte (LGL) leukemia is a chronic lymphoproliferative disease in which T-bet [T-box transcription factor 21 gene (tbx21)] overexpression may play a pathogenic role. T-bet orchestrates the differentiation of mature peripheral T-cells into interferon-γ (IFN-γ) and tumor necrosis factor-α producing CD4+ T-helper type I (Th1) and CD8+ T cytotoxic cells that are necessary for antiviral responses. When IL-12 is produced by antigen–presenting cells, T-bet expression is induced, causing direct stimulation of ifng gene transcription while simultaneously acting as a transcriptional repressor of the IL4 gene, which then leads to Th1 dominance and T-helper type 2 differentiation blockade. Additionally, T-bet has been shown to regulate histone acetylation of the ifng promoter and enhancer to loosen condensed DNA, creating greater accessibility for other transcription factor binding, which further amplifies IFNγ production. We found that treatment with a farnesyltransferase inhibitor tipifarnib reduced Th1 cytokines in LGL leukemia patient T-cells and blocked T-bet protein expression and IL-12 responsiveness in T-cells from healthy donors. The mechanism of suppression was based on modulation of histone acetylation of the ifng gene, which culminated in Th1 blockade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nash R, McSweeney P, Zambello R, Semenzato G, Loughran TP Jr (1993) Clonal studies of CD3-lymphoproliferative disease of granular lymphocytes. Blood 81:2363–2368

    PubMed  CAS  Google Scholar 

  2. Loughran TP Jr (1993) Clonal diseases of large granular lymphocytes. Blood 82:1–14

    PubMed  Google Scholar 

  3. Epling-Burnette PK, Sokol L, Chen X, Bai F, Zhou J et al (2008) Clinical improvement by farnesyltransferase inhibition in NK large granular lymphocyte leukemia associated with imbalanced NK receptor signaling. Blood 112:4694–4698

    Article  PubMed  CAS  Google Scholar 

  4. Zhang R, Shah MV, Yang J, Nyland SB, Liu X et al (2008) Network model of survival signaling in large granular lymphocyte leukemia. Proc Natl Acad Sci USA 105:16308–16313

    Article  PubMed  CAS  Google Scholar 

  5. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG et al (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100:655–669

    Article  PubMed  CAS  Google Scholar 

  6. Rengarajan J, Szabo SJ, Glimcher LH (2000) Transcriptional regulation of Th1/Th2 polarization. Immunol Today 21:479–483

    Article  PubMed  CAS  Google Scholar 

  7. Sullivan BM, Juedes A, Szabo SJ, von Herrath M, Glimcher LH (2003) Antigen-driven effector CD8 T cell function regulated by T-bet. Proc Natl Acad Sci USA 100:15818–15823

    Article  PubMed  CAS  Google Scholar 

  8. Avni O, Lee D, Macian F, Szabo SJ, Glimcher LH et al (2002) T(H) cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nat Immunol 3:643–651

    Article  PubMed  CAS  Google Scholar 

  9. Agarwal S, Rao A (1998) Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity 9:765–775

    Article  PubMed  CAS  Google Scholar 

  10. Valapour M, Guo J, Schroeder JT, Keen J, Cianferoni A et al (2002) Histone deacetylation inhibits IL4 gene expression in T cells. J Allergy Clin Immunol 109:238–245

    Article  PubMed  CAS  Google Scholar 

  11. Mullen AC, High FA, Hutchins AS, Lee HW, Villarino AV et al (2001) Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 292:1907–1910

    Article  PubMed  CAS  Google Scholar 

  12. Afkarian M, Sedy JR, Yang J, Jacobson NG, Cereb N et al (2002) T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat Immunol 3:549–557

    Article  PubMed  CAS  Google Scholar 

  13. O’Shea JJ, Paul WE (2010) Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327:1098–1102

    Google Scholar 

  14. Zeiser R, Youssef S, Baker J, Kambham N, Steinman L et al (2007) Preemptive HMG-CoA reductase inhibition provides graft-versus-host disease protection by Th-2 polarization while sparing graft-versus-leukemia activity. Blood 110:4588–4598

    Article  PubMed  CAS  Google Scholar 

  15. Dunn SE, Youssef S, Goldstein MJ, Prod’homme T, Weber MS et al (2006) Isoprenoids determine Th1/Th2 fate in pathogenic T cells, providing a mechanism of modulation of autoimmunity by atorvastatin. J Exp Med 203:401–412

    Article  PubMed  CAS  Google Scholar 

  16. Youssef S, Stuve O, Patarroyo JC, Ruiz PJ, Radosevich JL et al (2002) The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 420:78–84

    Article  PubMed  CAS  Google Scholar 

  17. Lerner EC, Zhang TT, Knowles DB, Qian Y, Hamilton AD et al (1997) Inhibition of the prenylation of K-Ras, but not H- or N-Ras, is highly resistant to CAAX peptidomimetics and requires both a farnesyltransferase and a geranylgeranyltransferase I inhibitor in human tumor cell lines. Oncogene 15:1283–1288

    Article  PubMed  CAS  Google Scholar 

  18. Miquel K, Pradines A, Sun J, Qian Y, Hamilton AD et al (1997) GGTI-298 induces G0-G1 block and apoptosis whereas FTI-277 causes G2-M enrichment in A549 cells. Cancer Res 57:1846–1850

    PubMed  CAS  Google Scholar 

  19. Epling-Burnette PK, Loughran TP Jr (2010) Suppression of farnesyltransferase activity in acute myeloid leukemia and myelodysplastic syndrome: current understanding and recommended use of tipifarnib. Expert Opin Investig Drugs 19:689–698

    Article  PubMed  CAS  Google Scholar 

  20. Kurzrock R, Cortes J, Kantarjian H (2002) Clinical development of farnesyltransferase inhibitors in leukemias and myelodysplastic syndrome. Semin Hematol 39:20–24

    Article  PubMed  CAS  Google Scholar 

  21. Reid TS, Beese LS (2004) Crystal structures of the anticancer clinical candidates R115777 (Tipifarnib) and BMS-214662 complexed with protein farnesyltransferase suggest a mechanism of FTI selectivity. Biochemistry 43:6877–6884

    Article  PubMed  CAS  Google Scholar 

  22. Raponi M, Lancet JE, Fan H, Dossey L, Lee G et al (2008) A 2-gene classifier for predicting response to the farnesyltransferase inhibitor tipifarnib in acute myeloid leukemia. Blood 111:2589–2596

    Article  PubMed  CAS  Google Scholar 

  23. Raponi M, Belly RT, Karp JE, Lancet JE, Atkins D et al (2004) Microarray analysis reveals genetic pathways modulated by tipifarnib in acute myeloid leukemia. BMC Cancer 4:56

    Article  PubMed  Google Scholar 

  24. Karp JE, Lancet JE (2008) Tipifarnib in the treatment of newly diagnosed acute myelogenous leukemia. Biologics 2:491–500

    PubMed  CAS  Google Scholar 

  25. Brandwein JM, Leber BF, Howson-Jan K, Schimmer AD, Schuh AC et al (2009) A phase I study of tipifarnib combined with conventional induction and consolidation therapy for previously untreated patients with acute myeloid leukemia aged 60 years and over. Leukemia 23:631–634

    Article  PubMed  CAS  Google Scholar 

  26. Harousseau JL (2007) Farnesyltransferase inhibitors in hematologic malignancies. Blood Rev 21:173–182

    Article  PubMed  CAS  Google Scholar 

  27. Harousseau JL, Lancet JE, Reiffers J, Lowenberg B, Thomas X et al (2007) A phase 2 study of the oral farnesyltransferase inhibitor tipifarnib in patients with refractory or relapsed acute myeloid leukemia. Blood 109:5151–5156

    Article  PubMed  CAS  Google Scholar 

  28. Goemans BF, Zwaan CM, Harlow A, Loonen AH, Gibson BE et al (2005) In vitro profiling of the sensitivity of pediatric leukemia cells to tipifarnib: identification of T-cell ALL and FAB M5 AML as the most sensitive subsets. Blood 106:3532–3537

    Article  PubMed  CAS  Google Scholar 

  29. Biagi C, Astolfi A, Masetti R, Serravalle S, Franzoni M et al (2010) Pediatric early T-cell precursor leukemia with NF1 deletion and high-sensitivity in vitro to tipifarnib. Leukemia 24:1230–1233

    Article  PubMed  CAS  Google Scholar 

  30. Witzig TE, Tang H, Micallef IN, Ansell SM, Link BK et al (2011) Multi-institutional phase II of the farnesyltransferase inhibitor tipifarnib (R115777) in patients with relapsed and refractory lymphomas. Blood [Epub ahead of print]

  31. Marks RE, Ho AW, Robbel C, Kuna T, Berk S et al (2007) Farnesyltransferase inhibitors inhibit T-cell cytokine production at the posttranscriptional level. Blood 110:1982–1988

    Article  PubMed  CAS  Google Scholar 

  32. Epling-Burnette PK, Painter JS, Rollison DE, Ku E, Vendron D et al (2007) Prevalence and clinical association of clonal T-cell expansions in Myelodysplastic Syndrome. Leukemia 21:659–667

    PubMed  CAS  Google Scholar 

  33. Epling-Burnette PK, Bai F, Wei S, Chaurasia P, Painter JS et al (2004) ERK couples chronic survival of NK cells to constitutively activated Ras in lymphoproliferative disease of granular lymphocytes (LDGL). Oncogene 23:9220–9229

    PubMed  CAS  Google Scholar 

  34. Chen X, Bai F, Sokol L, Zhou J, Ren A et al (2009) A critical role for DAP10 and DAP12 in CD8+ cell-mediated tissue damage in large granular lymphocyte leukemia. Blood 113:3226–3234

    Article  PubMed  CAS  Google Scholar 

  35. Zou JX, Rollison DE, Boulware D, Chen DT, Sloand EM et al (2009) Altered naive and memory CD4+ T-cell homeostasis and immunosenescence characterize younger patients with myelodysplastic syndrome. Leukemia 23:1288–1296

    Article  PubMed  CAS  Google Scholar 

  36. Villagra A, Cheng F, Wang HW, Suarez I, Glozak M et al (2009) The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol 10:92–100

    Article  PubMed  CAS  Google Scholar 

  37. Morinobu A, Kanno Y, O’Shea JJ (2004) Discrete roles for histone acetylation in human T helper 1 cell-specific gene expression. J Biol Chem 279:40640–40646

    Article  PubMed  CAS  Google Scholar 

  38. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  39. Yang J, Epling-Burnette PK, Painter JS, Zou J, Bai F et al (2008) Antigen activation and impaired Fas-induced death-inducing signaling complex formation in T-large-granular lymphocyte leukemia. Blood 111:1610–1616

    Article  PubMed  CAS  Google Scholar 

  40. Sebti SM, Hamilton AD (1996) Rational design of Ras prenyltransferase inhibitors as potential anticancer drugs. Biochem Soc Trans 24:692–699

    PubMed  CAS  Google Scholar 

  41. Magram J, Sfarra J, Connaughton S, Faherty D, Warrier R et al (1996) IL-12-deficient mice are defective but not devoid of type 1 cytokine responses. Ann NY Acad Sci 795:60–70

    Article  PubMed  CAS  Google Scholar 

  42. Zhang S, Lukacs NW, Lawless VA, Kunkel SL, Kaplan MH (2000) Cutting edge: differential expression of chemokines in Th1 and Th2 cells is dependent on Stat6 but not Stat4. J Immunol 165:10–14

    PubMed  CAS  Google Scholar 

  43. Mingari MC, Maggi E, Cambiaggi A, Annunziato F, Schiavetti F et al (1996) Development in vitro of human CD4+ thymocytes into functionally mature Th2 cells. Exogenous interleukin-12 is required for priming thymocytes to produce both Th1 cytokines and interleukin-10. Eur J Immunol 26:1083–1087

    Article  PubMed  CAS  Google Scholar 

  44. Collins JT, Dunnick WA (1999) Cutting edge: IFN-gamma regulated germline transcripts are expressed from gamma2a transgenes independently of the heavy chain 3′ enhancers. J Immunol 163:5758–5762

    PubMed  CAS  Google Scholar 

  45. Spilianakis CG, Lee GR, Flavell RA (2005) Twisting the Th1/Th2 immune response via the retinoid × receptor: lessons from a genetic approach. Eur J Immunol 35:3400–3404

    Article  PubMed  CAS  Google Scholar 

  46. Chen X, Vodanovic-Jankovic S, Johnson B, Keller M, Komorowski R et al (2007) Absence of regulatory T-cell control of TH1 and TH17 cells is responsible for the autoimmune-mediated pathology in chronic graft-versus-host disease. Blood 110:3804–3813

    Article  PubMed  CAS  Google Scholar 

  47. Esensten JH, Lee MR, Glimcher LH, Bluestone JA (2009) T-bet-deficient NOD mice are protected from diabetes due to defects in both T cell and innate immune system function. J Immunol 183:75–82

    Article  PubMed  CAS  Google Scholar 

  48. Gocke AR, Cravens PD, Ben LH, Hussain RZ, Northrop SC et al (2007) T-bet regulates the fate of Th1 and Th17 lymphocytes in autoimmunity. J Immunol 178:1341–1348

    PubMed  CAS  Google Scholar 

  49. Ji N, Sosa RA, Forsthuber TG (2011) More than just a T-box: the role of T-bet as a possible biomarker and therapeutic target in autoimmune diseases. Immunotherapy 3:435–441

    Article  PubMed  CAS  Google Scholar 

  50. Liu R, Hao J, Dayao CS, Shi FD, Campagnolo DI (2009) T-bet deficiency decreases susceptibility to experimental myasthenia gravis. Exp Neurol 220:366–373

    Article  PubMed  CAS  Google Scholar 

  51. Shi Y, Wang H, Su Z, Chen J, Xue Y et al (2010) Differentiation imbalance of Th1/Th17 in peripheral blood mononuclear cells might contribute to pathogenesis of Hashimoto’s thyroiditis. Scand J Immunol 72:250–255

    Article  PubMed  CAS  Google Scholar 

  52. You Y, Zhao W, Chen S, Tan W, Dan Y et al (2010) Association of TBX21 gene haplotypes in a Chinese population with systemic lupus erythematosus. Scand J Rheumatol 39:254–258

    Article  PubMed  CAS  Google Scholar 

  53. Shi M, Lin TH, Appell KC, Berg LJ (2008) Janus-kinase-3-dependent signals induce chromatin remodeling at the Ifng locus during T helper 1 cell differentiation. Immunity 28:763–773

    Article  PubMed  CAS  Google Scholar 

  54. Oliveira JB, Bidere N, Niemela JE, Zheng L, Sakai K et al (2007) NRAS mutation causes a human autoimmune lymphoproliferative syndrome. Proc Natl Acad Sci USA 104:8953–8958

    Article  PubMed  CAS  Google Scholar 

  55. Bolick SC, Landowski TH, Boulware D, Oshiro MM, Ohkanda J et al (2003) The farnesyl transferase inhibitor, FTI-277, inhibits growth and induces apoptosis in drug-resistant myeloma tumor cells. Leukemia 17:451–457

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the NCI R01CA11211201, the NIH AI056213 and U54RR019397-05. Tipifarnib was provided by the Cancer Therapies Evaluation Program (CTEP). Flow cytometry support was provided by the H. Lee Moffitt Cancer Center Flow Cytometry Core Facility.

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pearlie Epling-Burnette.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 95 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, F., Villagra, A.V., Zou, J. et al. Tipifarnib-mediated suppression of T-bet-dependent signaling pathways. Cancer Immunol Immunother 61, 523–533 (2012). https://doi.org/10.1007/s00262-011-1109-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1109-0

Keywords

Navigation