Skip to main content
Log in

Nitric oxide short-circuits interleukin-12-mediated tumor regression

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Interleukin-12 (IL-12) can promote tumor regression via activation of multiple lymphocytic and myelocytic effectors. Whereas the cytotoxic mechanisms employed by T/NK/NKT cells in IL-12-mediated tumor kill are well defined, the antitumor role of macrophage-produced cytotoxic metabolites has been more controversial. To this end, we investigated the specific role of nitric oxide (NO), a major macrophage effector molecule, in post-IL-12 tumor regression. Analysis of tumors following a single intratumoral injection of slow-release IL-12 microspheres showed an IFNγ-dependent sevenfold increase in inducible nitric oxide synthase (iNOS) expression within 48 h. Flow cytometric analysis of tumor-resident leukocytes and in vivo depletion studies identified CD11b+ F4/80+ Gr1lo macrophages as the primary source of iNOS. Blocking of post-therapy iNOS activity with N-nitro-l-arginine methyl ester (L-NAME) dramatically enhanced tumor suppression revealing the inhibitory effect of NO on IL-12-driven antitumor immunity. Superior tumor regression in mice receiving combination treatment was associated with enhanced survival and proliferation of activated tumor-resident CD8+ T-effector/memory cells (Tem). These findings demonstrate that macrophage-produced NO negatively regulates the antitumor activity of IL-12 via its detrimental effects on CD8+ T cells and identify L-NAME as a potent adjuvant in IL-12 therapy of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3:133–146

    Article  PubMed  CAS  Google Scholar 

  2. Tsung K, Meko JB, Peplinski GR, Tsung YL, Norton JA (1997) IL-12 induces T helper 1-directed antitumor response. J Immunol 158:3359–3365

    PubMed  CAS  Google Scholar 

  3. Tsung K, Dolan JP, Tsung YL, Norton JA (2002) Macrophages as effector cells in interleukin 12-induced T cell-dependent tumor rejection. Cancer Res 62:5069–5075

    PubMed  CAS  Google Scholar 

  4. Hess SD, Egilmez NK, Bailey N, Anderson TM, Mathiowitz E, Bernstein SH, Bankert RB (2003) Human CD4+ T cells present within the microenvironment of human lung tumors are mobilized by the local and sustained release of IL-12 to kill tumors in situ by indirect effects of IFN-γ. J Immunol 170:400–412

    PubMed  CAS  Google Scholar 

  5. Watkins SK, Li B, Richardson KS, Head K, Egilmez NK, Zeng Q, Suttles J, Stout RD (2009) Rapid release of cytoplasmic IL-15 from tumor-associated macrophages is an initial and critical event in IL-12 initiated tumor regression. Eur J Immunol 39:1–19

    Article  Google Scholar 

  6. MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350

    Article  PubMed  CAS  Google Scholar 

  7. Mocellin S, Bronte V, Nitti D (2007) Nitric oxide, a double edged sword in cancer biology: searching for therapeutic opportunities. Med Res Rev 27:317–352

    Article  PubMed  CAS  Google Scholar 

  8. Paradise WA, Vesper BJ, Goel A, Waltonen JD, Altman KW, Haines GK III, Radosevich JA (2010) Nitric oxide: perspectives and emerging studies of a well known cytotoxin. Int J Mol Sci 11:2715–2745. doi:10.3390/ijms11072715

    Article  PubMed  CAS  Google Scholar 

  9. Morbidelli L, Donnini S, Ziche M (2004) Role of nitric oxide in tumor angiogenesis. Cancer Treat Res 117:155–167

    Article  PubMed  CAS  Google Scholar 

  10. Fukumura D, Kashiwagi S, Jain RK (2006) The role of nitric oxide in tumour progression. Nature Rev Cancer 6:521–534

    Article  CAS  Google Scholar 

  11. Siegert A, Rosenberg C, Schmitt WD, Denkert C, Hauptmann S (2002) Nitric oxide of human colorectal adenocarcinoma cell lines promotes tumour cell invasion. Br J Cancer 86:1310–1315

    Article  PubMed  CAS  Google Scholar 

  12. Jadeski LC, Chakraborty C, Lala PK (2003) Nitric oxide-mediated promotion of mammary tumour cell migration requires sequential activation of nitric oxide synthase, guanylate cyclase and mitogen-activated protein kinase. Int J Cancer 106:496–504

    Article  PubMed  CAS  Google Scholar 

  13. Kurzawa Koblish H, Hunter CA, Wysocka M, Trinchieri G, Lee WMF (1998) Immune suppression by recombinant interleukin (rIL)-12 involves interferon γ induction of nitric oxide synthase 2 (iNOS) activity: inhibitors of NO generation reveal the extent of rIL-12 vaccine adjuvant effect. J Exp Med 188:1603–1610

    Article  Google Scholar 

  14. Medot-Pirenne M, Heilman MJ, Saxena M, McDermott PE, Mills CD (1999) Augmentation of an antitumor CTL response in vivo by inhibition of suppressor macrophage nitric oxide. J Immunol 163:587–5882

    Google Scholar 

  15. Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, Zanovello P, Segal DM (2002) Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol 168:689–695

    PubMed  CAS  Google Scholar 

  16. McLean M, Wallace HL, Sharma A, Hill HC, Sabel MS, Egilmez NK (2004) A murine surgical metastasis model for the evaluation of anti-cancer strategies. Clin Exp Metastasis 21(4):363–369

    Article  PubMed  Google Scholar 

  17. Kilinc MO, Aulakh KS, Nair RE, Jones SA II, Alard P, Kosiewicz MM, Egilmez NK (2006) Reversing tumor immune suppression with intra-tumoral IL-12: activation of tumor-associated T-effector/memory cells, induction of T-suppressor apoptosis and infiltration of CD8+ T-effectors. J Immunol 177:6962–6973

    PubMed  CAS  Google Scholar 

  18. Nair RE, Kilinc MO, Jones SA, Egilmez NK (2006) Chronic immune therapy induces a progressive increase in intra-tumoral T-suppressor activity and a concurrent loss of tumor-specific CD8+ T-effectors in her-2/neu transgenic mice bearing advanced spontaneous tumors. J Immunol 176(12):7325–7334

    PubMed  CAS  Google Scholar 

  19. Gu T, Kilinc MO, Egilmez NK (2008) Transient activation of tumor-associated T-effector/memory cells promotes tumor eradication via NK-cell recruitment: minimal role for long-term T-cell immunity in cure of metastatic disease. Cancer Immunol Immunother 57(7):997–1005

    Article  PubMed  CAS  Google Scholar 

  20. Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjällman AH, Ballmer-Hofer K, Schwendener RA (2006) Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer 95(3):272–281

    Article  PubMed  CAS  Google Scholar 

  21. Kilinc MO, Gu T, Harden JL, Virtuoso LP, Egilmez NK (2009) Central role of tumor-associated CD8+ T effector/memory cells in restoring systemic antitumor immunity. J Immunol 182:4217–4225

    Article  PubMed  CAS  Google Scholar 

  22. Sica A, Larghi P, Mancino A, Rubino L, Porta C, Grazia Totaro M, Rimoldi M, Kumar Biswas S, Allavena P, Mantovani A (2008) Macrophage polarization in tumour progression. Sem Cancer Biol 18:349–355

    Article  CAS  Google Scholar 

  23. Movahedi K, Laoui D, Gysemans C, Baeten M, Stangé G, Van den Bossche J, Mack M, Pipeleers D, In’t Veld P, De Baetselier P, Van Ginderachter JA (2010) Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res 70:5728–5739

    Article  PubMed  CAS  Google Scholar 

  24. Gallo O et al (1998) Role of nitric oxide in angiogenesis and tumor progression in head and neck cancer. J Natl Cancer Inst 90:584–596

    Google Scholar 

  25. Jadeski LC, Lala PK (1999) Nitric oxide synthase inhibition by NG-nitro-l-arginine methyl ester inhibits tumor-induced angiogenesis in mammary tumors. Am J Pathol 155:1381–1390

    Article  PubMed  CAS  Google Scholar 

  26. Del Vecchio M, Bajetta E, Conova S, Lotze MT, Wesa A, Parmiani G, Anichini A (2007) Interleukin-12: biological properties and clinical application. Clin Cancer Res 13(16):4677–4685

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH/NCI grant R01-CA100656 (NKE) and DOD Grant BC0966372 (MOK).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nejat K. Egilmez or Mehmet O. Kilinc.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 248 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egilmez, N.K., Harden, J.L., Virtuoso, L.P. et al. Nitric oxide short-circuits interleukin-12-mediated tumor regression. Cancer Immunol Immunother 60, 839–845 (2011). https://doi.org/10.1007/s00262-011-0998-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-0998-2

Keywords

Navigation