Skip to main content

Advertisement

Log in

Why do centenarians escape or postpone cancer? The role of IGF-1, inflammation and p53

  • Symposium in Writing
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

Centenarians are exceptionally long living individuals who escaped the most common age-related diseases. In particular they appear to be effectively protected from cancers. The mechanisms that underlie this protection are quite complex and still largely unclear.

Aim

To critically analyse the literature in order to propose a unifying hypothesis that can account for this cancer protection in centenarians.

Methods

Review of the scientific literature regarding three main players in tumourigenesis such as IGF-1, inflammation and p53, and centenarians.

Results

Centenarians appear to be characterised by low IGF-1-mediated responses and high levels of anti-inflammatory cytokines such as IL-10 and TGF-β, a condition that results in protection from cancer. Both inflammation and IGF-1 pathway converge on the tumour suppressor p53. Accordingly, some studies indicate that genetic variants of p53 are associated with human longevity by providing protection from cancer mortality.

Conclusions

The available data let us to hypothesise that among other possible mechanisms, well-preserved p53-mediated responses are likely a key factor contributing to protection from cancer in centenarians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Franceschi C, Motta L, Motta M, Malaguarnera M, Capri M, Vasto S, Candore G, Caruso C, CE IMUS (2008) The extreme longevity: the state of the art in Italy. Exp Gerontol 43:45–52

    Article  PubMed  Google Scholar 

  2. Caruso C, Lio D, Cavallone L, Franceschi C (2004) Aging, longevity, inflammation, and cancer. Ann N Y Acad Sci 1028:1–13

    Article  PubMed  CAS  Google Scholar 

  3. Piantanelli L (1988) Cancer and aging: from the kinetics of biological parameters to the kinetics of cancer incidence and mortality. Ann N Y Acad Sci 521:99–109

    Article  PubMed  CAS  Google Scholar 

  4. Bonafè M, Barbi C, Storci G, Salvioli S, Capri M, Olivieri F, Valensin S, Monti D, Gonos ES, De Benedictis G, Franceschi C (2002) What studies on human longevity tell us about the risk for cancer in the oldest old: data and hypotheses on the genetics and immunology of centenarians. Exp Gerontol 37:1263–1271

    Article  PubMed  Google Scholar 

  5. Donehower LA (2005) p53: Guardian AND suppressor of longevity? Exp Gerontol 40:7–9

    Article  PubMed  CAS  Google Scholar 

  6. Lanni C, Racchi M, Mazzini G, Ranzenigo A, Polotti R, Sinforiani E, Olivari L, Barcikowska M, Styczynska M, Kuznicki J, Szybinska A, Govoni S, Memo M, Uberti D (2008) Conformationally altered p53: a novel Alzheimer’s disease marker? Mol Psychiatry 13:641–647

    Article  PubMed  CAS  Google Scholar 

  7. Lund PK (1994) Insulin-like growth factor I: molecular biology and relevance to tissue-specific expression and action. Recent Prog Horm Res 49:125–148

    PubMed  CAS  Google Scholar 

  8. Longo VD, Fabrizio P (2002) Regulation of longevity and stress resistance: a molecular strategy conserved from yeast to humans? Cell Mol Life Sci 59:903–908

    Article  PubMed  CAS  Google Scholar 

  9. Longo V, Finch CE (2003) Evolutionary medicine: from dwarf model systems to healthy centenarians? Science 299:1342–1346

    Article  PubMed  CAS  Google Scholar 

  10. Kenyon C (2001) A conserved regulatory system for aging. Cell 105:165–168

    Article  PubMed  CAS  Google Scholar 

  11. Dozmorov I, Bartke A, Miller RA (2001) Array-based expression analysis of mouse liver genes: effect of age and of the longevity mutant Prop1df. J Gerontol A Biol Sci Med Sci 56:B72–B80

    PubMed  CAS  Google Scholar 

  12. Paolisso G, Gambardella A, Ammendola S, D’Amore A, Balbi V, Varricchio M, D’Onofrio F (1996) Glucose tolerance and insulin action in healthy centenarians. Am J Physiol 270:E890–E894

    PubMed  CAS  Google Scholar 

  13. Paolisso G, Barbieri M, Rizzo MR, Cartella C, Rotondi M, Bonafè M, Franceschi C, Rose G, De Benedictis G (2001) Low insulin resistance and preserved beta-cell function contribute to human longevity but are not associated with TH-INS genes. Exp Gerontol 37:149–156

    Article  PubMed  CAS  Google Scholar 

  14. Barbieri M, Ferrucci L, Ragno E, Corsi A, Bandinelli S, Bonafè M, Olivieri F, Giovagnetti S, Franceschi C, Guralnik JM, Paolisso G (2003) Chronic inflammation and the effect of IGF-I on muscle strength and power in older persons. Am J Physiol Endocrinol Metab 284:E481–E487

    PubMed  CAS  Google Scholar 

  15. Bonafè M, Barbieri M, Marchegiani F, Olivieri F, Ragno E, Giampieri C, Mugianesi E, Centurelli M, Franceschi C, Paolisso G (2003) Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity: cues for an evolutionarily conserved mechanism of life span control. J Clin Endocrinol Metab 88:3299–3304

    Article  PubMed  CAS  Google Scholar 

  16. Van Heemst D, Beekman M, Mooijaart SP, Heijmans BT, Brandt BW, Zwaan BJ, Slagboom PE, Westendorp RG (2005) Reduced insulin/IGF-1 signalling and human longevity. Aging Cell 4:79–85

    Article  PubMed  CAS  Google Scholar 

  17. Suh Y, Atzmon G, Cho MO, Hwang D, Liu B, Leahy DJ, Barzilai N, Cohen P (2008) Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci USA 105:3438–3442

    Article  PubMed  CAS  Google Scholar 

  18. Cappola AR, Xuem QL, Ferrucci L, Guralnik JM, Volpato S, Fried LP (2003) Insulin-like growth factor I and interleukin-6 contribute synergistically to disability and mortality in older women. J Clin Endocrinol Metab 88:2019–2025

    Article  PubMed  CAS  Google Scholar 

  19. Renehan AG, Zwahlen M, Minder C, O’Dwyer ST, Shalet SM, Egger M (2004) Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet 363:1346–1353

    Article  PubMed  CAS  Google Scholar 

  20. Baserga R, Peruzzi F, Reiss K (2003) The IGF-1 receptor in cancer biology. Int J Cancer 107:873–877

    Article  PubMed  CAS  Google Scholar 

  21. Niedernhofer LJ, Garinis GA, Raams A, Lalai AS, Robinson AR, Appeldoorn E, Odijk H, Oostendorp R, Ahmad A, van Leeuwen W, Theil AF, Vermeulen W, van der Horst GT, Meinecke P, Kleijer WJ, Vijg J, Jaspers NG, Hoeijmakers JH (2006) A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444:1038–1043

    Article  PubMed  CAS  Google Scholar 

  22. Schumacher B, van der Pluijm I, Moorhouse MJ, Kosteas T, Robinson AR, Suh Y, Breit TM, van Steeg H, Niedernhofer LJ, van Ijcken W, Bartke A, Spindler SR, Hoeijmakers JH, van der Horst GT, Garinis GA (2008) Delayed and accelerated aging share common longevity assurance mechanisms. PLoS Genet 4:e1000161

    Article  PubMed  CAS  Google Scholar 

  23. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    Article  PubMed  CAS  Google Scholar 

  24. Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254

    CAS  Google Scholar 

  25. Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia MP, Invidia L, Celani L, Scurti M, Cevenini E, Castellani GC, Salvioli S (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevità emerged from studies in humans. Mech Ageing Dev 128:92–105

    Article  PubMed  CAS  Google Scholar 

  26. Lio D, Scola L, Crivello A, Colonna-Romano G, Candore G, Bonafé M, Cavallone L, Marchegiani F, Olivieri F, Franceschi C, Caruso C (2003) Inflammation, genetics, and longevity: further studies on the protective effects in men of IL-10–1082 promoter SNP and its interaction with TNF-alpha -308 promoter SNP. J Med Genet 40:296–299

    Article  PubMed  CAS  Google Scholar 

  27. Cavallone L, Bonafè M, Olivieri F, Cardelli M, Marchegiani F, Giovagnetti S, Di Stasio G, Giampieri C, Mugianesi E, Stecconi R, Sciacca F, Grimaldi LM, De Benedictis G, Lio D, Caruso C, Franceschi C (2003) The role of IL-1 gene cluster in longevity: a study in Italian population. Mech Ageing Dev 124:533–538

    Article  PubMed  CAS  Google Scholar 

  28. Carrieri G, Marzi E, Olivieri F, Marchegiani F, Cavallone L, Cardelli M, Giovagnetti S, Stecconi R, Molendini C, Trapassi C, De Benedictis G, Kletsas D, Franceschi C (2004) The G/C915 polymorphism of transforming growth factor beta1 is associated with human longevity: a study in Italian centenarians. Aging Cell 3:443–448

    Article  PubMed  CAS  Google Scholar 

  29. Mannucci PM, Mari D, Merati G, Peyvandi F, Tagliabue L, Sacchi E, Taioli E, Sansoni P, Bertolini S, Franceschi C (1997) Gene polymorphisms predicting high plasma levels of coagulation and fibrinolysis proteins. A study in centenarians. Arterioscler Thromb Vasc Biol 17:755–759

    PubMed  CAS  Google Scholar 

  30. Kortlever RM, Higgins PJ, Bernards R (2006) Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat Cell Biol 8:877–884

    Article  PubMed  CAS  Google Scholar 

  31. Franceschi C, Olivieri F, Marchegiani F, Cardelli M, Cavallone L, Capri M, Salvioli S, Valensin S, De Benedictis G, Di Iorio A, Caruso C, Paolisso G, Monti D (2005) Genes involved in immune response/inflammation, IGF1/insulin pathway and response to oxidative stress play a major role in the genetics of human longevity: the lesson of centenarians. Mech Ageing Dev 126:351–361

    Article  PubMed  CAS  Google Scholar 

  32. Bonafè M, Olivieri F, Cavallone L, Giovagnetti S, Mayegiani F, Cardelli M, Pieri C, Marra M, Antonicelli R, Lisa R, Rizzo MR, Paolisso G, Monti D, Franceschi C (2001) A gender—dependent genetic predisposition to produce high levels of IL–6 is detrimental for longevity. Eur J Immunol 31:2357–2361

    Article  PubMed  Google Scholar 

  33. Cardelli M, Cavallone L, Marchegiani F, Oliveri F, Dato S, Montesanto A, Lescai F, Lisa R, De Benedictis G, Franceschi C (2008) A genetic-demographic approach reveals male-specific association between survival and tumor necrosis factor (A/G)-308 polymorphism. J Gerontol A Biol Sci Med Sci 63:454–460

    PubMed  Google Scholar 

  34. Belluco C, Olivieri F, Bonafè M, Giovagnetti S, Mammano E, Scalerta R, Ambrosi A, Franceschi C, Nitti D, Lise M (2003) 174 G>C polymorphism of interleukin 6 gene promoter affects interleukin 6 serum level in patients with colorectal cancer. Clin Cancer Res 9:2173–2176

    PubMed  CAS  Google Scholar 

  35. Ancrile B, Lim KH, Counter CM (2007) Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis. Genes Dev 21:1714–1719

    Article  PubMed  CAS  Google Scholar 

  36. Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M, Ceccarelli C, Santini D, Paterini P, Marcu KB, Chieco P, Bonafè M (2007) IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 117:3988–4002

    Article  PubMed  CAS  Google Scholar 

  37. Hodge DR, Peng B, Cherry JC, Hurt EM, Fox SD, Kelley JA, Munroe DJ, Farrar WL (2005) Interleukin 6 supports the maintenance of p53 tumor suppressor gene promoter methylation. Cancer Res 65:4673–4682

    Article  PubMed  CAS  Google Scholar 

  38. Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ, Aarden LA, Mooi WJ, Peeper DS (2008) Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133:1019–1031

    Article  PubMed  CAS  Google Scholar 

  39. Dijsselbloem N, Goriely S, Albarani V, Gerlo S, Francoz S, Marine JC, Goldman M, Haegeman G, Vanden Berghe W (2007) A critical role for p53 in the control of NF-kappaB-dependent gene expression in TLR4-stimulated dendritic cells exposed to Genistein. J Immunol 178:5048–5057

    PubMed  CAS  Google Scholar 

  40. Ko LJ, Prives C (1996) p53: Puzzle and paradigm. Genes Dev 10:1054–1072

    Article  PubMed  CAS  Google Scholar 

  41. Levine AJ (1997) p53, The cellular gatekeeper for growth and division. Cell 88:323–331

    Article  PubMed  CAS  Google Scholar 

  42. Attardi LD, Donehower LA (2005) Probing p53 biological functions through the use of genetically engineered mouse models. Mutat Res 576:4–21

    PubMed  CAS  Google Scholar 

  43. Scrable H, Medrano S, Ungewitter E (2008) Running on empty: how p53 controls INS/IGF signaling and affects lifespan. Exp Gerontol [Epub ahead of print]

  44. Staib F, Robles AI, Varticovski L, Wang XW, Zeeberg BR, Sirotin M, Zhurkin VB, Hofseth LJ, Hussain SP, Weinstein JN, Galle PR, Harris CC (2005) The p53 tumor suppressor network is a key responder to microenvironmental components of chronic inflammatory stress. Cancer Res 65:10255–10264

    Article  PubMed  CAS  Google Scholar 

  45. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  PubMed  CAS  Google Scholar 

  46. Zhao R, Gish K, Murphy M, Yin Y, Notterman D, Hoffman WH, Tom E, Mack DH, Levine AJ (2000) Analysis of p53- regulated gene expression patterns using oligonucleotide arrays. Genes Dev 14:981–993

    Article  PubMed  CAS  Google Scholar 

  47. Wang L, Wu Q, Qiu P, Mirza A, McGuirk M, Kirschmeier P, Greene JR, Wang Y, Pickett CB, Liu S (2001) Analyses of p53 target genes in the human genome by bioinformatic and microarray approaches. J Biol Chem 276:43604–43610

    Article  PubMed  CAS  Google Scholar 

  48. Leech M, Xue JR, Dacumos A, Hall P, Santos L, Yang Y, Li M, Kitching AR, Morand EF (2008) The tumour suppressor gene p53 modulates the severity of antigen-induced arthritis and the systemic immune response. Clin Exp Immunol 152:345–353

    Article  PubMed  CAS  Google Scholar 

  49. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221

    Article  PubMed  CAS  Google Scholar 

  50. Tyner SD, Venkatachalam S, Choi J, Jones S, Ghebranious N, Igelmann H, Lu X, Soron G, Cooper B, Brayton C, Hee Park S, Thompson T, Karsenty G, Bradley A, Donehower LA (2002) p53 Mutant mice that display early ageing-associated phenotypes. Nature 415:45–53

    Article  PubMed  CAS  Google Scholar 

  51. Donehower LA (2002) Does p53 affect organismal aging? J Cell Physiol 192:23–33

    Article  PubMed  CAS  Google Scholar 

  52. Moore L, Lu X, Ghebranious N, Tyner S, Donehower LA (2007) Aging-associated truncated form of p53 interacts with wild-type p53 and alters p53 stability, localization, and activity. Mech Ageing Dev 128:717–730

    Article  PubMed  CAS  Google Scholar 

  53. García-Cao I, García-Cao M, Martín-Caballero J, Criado LM, Klatt P, Flores JM, Weill JC, Blasco MA, Serrano M (2002) “Super p53” mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J 21:6225–6235

    Article  PubMed  Google Scholar 

  54. Matheu A, Maraver A, Klatt P, Flores I, Garcia-Cao I, Borras C, Flores JM, Viña J, Blasco MA, Serrano M (2007) Delayed ageing through damage protection by the Arf/p53 pathway. Nature 448:375–379

    Article  PubMed  CAS  Google Scholar 

  55. Feng Z, Hu W, Teresky AK, Hernando E, Cordon-Cardo C, Levine AJ (2007) Declining p53 function in the aging process: a possible mechanism for the increased tumor incidence in older populations. Proc Natl Acad Sci USA 104:16633–16638

    Article  PubMed  CAS  Google Scholar 

  56. Khosravi R, Maya R, Gottlieb T, Oren M, Shiloh Y, Shkedy D (1999) Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc Natl Acad Sci USA 96:14973–14977

    Article  PubMed  CAS  Google Scholar 

  57. Méplan C, Richard MJ, Hainaut P (2000) Redox signalling and transition metals in the control of the p53 pathway. Biochem Pharmacol 59:25–33

    Article  PubMed  Google Scholar 

  58. Uberti D, Lanni C, Carsana T, Francisconi S, Missale C, Racchi M, Govoni S, Memo M (2006) Identification of a mutant-like conformation of p53 in fibroblasts from sporadic Alzheimer’s disease patients. Neurobiol Aging 27:1193–1201

    Article  PubMed  CAS  Google Scholar 

  59. Uberti D, Carsana T, Bernardi E, Rodella L, Grigolato P, Lanni C, Racchi M, Govoni S, Memo M (2002) Selective impairment of p53-mediated cell death in fibroblasts from sporadic Alzheimer’s disease patients. J Cell Sci 115:3131–3138

    PubMed  CAS  Google Scholar 

  60. Roe CM, Behrens MI, Xiong C, Miller JP, Morris JC (2005) Alzheimer disease and cancer. Neurology 64:895–898

    PubMed  CAS  Google Scholar 

  61. Lanni C, Uberti D, Racchi M, Govoni S, Memo M (2007) Unfolded p53: a potential biomarker for Alzheimer’s disease. J Alzheimers Dis 12:93–99

    PubMed  CAS  Google Scholar 

  62. Maier B, Gluba W, Bernier B, Turner T, Mohammad K, Guise T, Sutherland A, Thorner M, Scrable H (2004) Modulation of mammalian life span by the short isoform of p53. Genes Dev 18:306–319

    Article  PubMed  CAS  Google Scholar 

  63. Bourdon JC, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP, Saville MK, Lane DP (2005) p53 Isoforms can regulate p53 transcriptional activity. Genes Dev 19:2122–2137

    Article  PubMed  CAS  Google Scholar 

  64. Bourdon JC (2007) p53 Family isoforms. Curr Pharm Biotechnol 8:332–336

    Article  PubMed  CAS  Google Scholar 

  65. Van Heemst D, Mooijaart SP, Beekman M, Schreuder J, de Craen AJ, Brandt BW, Slagboom PE, Westendorp RG, Group LongLifeStudy (2005) Variation in the human TP53 gene affects old age survival and cancer mortality. Exp Gerontol 40:11–15

    Article  PubMed  CAS  Google Scholar 

  66. Mammano E, Belluco C, Bonafé M, Olivieri F, Mugianesi E, Barbi C, Mishto M, Cosci M, Franceschi C, Lise M, Nitti D (2008) Association of p53 polymorphisms and colorectal cancer: modulation of risk and progression. Eur J Surg Oncol (Epub ahead of print)

  67. Ørsted DD, Bojesen SE, Tybjaerg-Hansen A, Nordestgaard BG (2007) Tumor suppressor p53 Arg72Pro polymorphism and longevity, cancer survival, and risk of cancer in the general population. J Exp Med 204:1295–1301

    Article  PubMed  CAS  Google Scholar 

  68. Regula KM, Kirshenbaum LA (2001) p53 Activates the mitochondrial death pathway and apoptosis of ventricular myocytes independent of de novo gene transcription. J Mol Cell Cardiol 33:1435–1445

    Article  PubMed  CAS  Google Scholar 

  69. Bonafé M, Salvioli S, Barbi C, Trapassi C, Tocco F, Storci G, Invidia L, Vannini I, Rossi M, Marzi E, Mishto M, Capri M, Olivieri F, Antonicelli R, Memo M, Uberti D, Nacmias B, Sorbi S, Monti D, Franceschi C (2004) The different apoptotic potential of the p53 codon 72 alleles increases with age and modulates in vivo ischaemia-induced cell death. Cell Death Differ 11:962–973

    Article  PubMed  CAS  Google Scholar 

  70. Salvioli S, Bonafé M, Barbi C, Storci G, Trapassi C, Tocco F, Gravina S, Rossi M, Tiberi L, Mondello C, Monti D, Franceschi C (2005) p53 Codon 72 alleles influence the response to anticancer drugs in cells from aged people by regulating the cell cycle inhibitor p21WAF1. Cell Cycle 4:1264–1271

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by: EU (European Union) Grant “PROTEOMAGE” Contract n. FP6-518230; the PRRIITT program of the Emilia-Romagna Region (and Fondi Strutturali Obiettivo 2); Italian Ministry of Health Grant “Progetto Finalizzato «Studio delle differenze uomo-donna nei meccanismi patogenetici delle malattie cardiovascolari»” to C. Franceschi; Italian Ministry of University and Research (MiUR) PRIN 2006 Project to C. Franceschi (no. 2006061707), and S. Salvioli (no. 2006063387); University of Bologna Grant “Ricerca Fondamentale Orientata (RFO ex 60%) 2005”; Roberto and Cornelia Pallotti Legacy for Cancer Research Grants to C. Franceschi and S. Salvioli. University of Bologna “Progetti Strategici” 2006 grant (“p53 e patologie non neoplastiche nell’anziano: uno studio multidisciplinare sul ruolo del polimorfismo al codone 72 del gene TP53”) to S. Salvioli.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Salvioli.

Additional information

This article is part of the Symposium in Writing on “Impact of Ageing on Cancer Immunity and Immunotherapy”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salvioli, S., Capri, M., Bucci, L. et al. Why do centenarians escape or postpone cancer? The role of IGF-1, inflammation and p53. Cancer Immunol Immunother 58, 1909–1917 (2009). https://doi.org/10.1007/s00262-008-0639-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-008-0639-6

Keywords

Navigation