Skip to main content

Advertisement

Log in

Influence of varying doses of granulocyte-macrophage colony-stimulating factor on pharmacokinetics and antibody-dependent cellular cytotoxicity

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF) is used in immunotherapy for correction of neutropoenia. The optimal dose for activation of immune functions and the pharmacokinetics following repeated administrations is less analysed in depth. In this study, the pharmacokinetics and the effects on haematological functions and antibody-dependent cellular cytotoxicity (ADCC) were analysed in 50 patients with metastatic colorectal carcinoma receiving monoclonal antibody based therapy in combination with Escherichia coli-derived GM-CSF (molgramostim) administered s.c. once daily for 10 days every month over a period of 4 months. Thirty-three patients received a GM-CSF dose of 200–250 μg/m2/day. Seventeen patients received GM-CSF doses varying between 65 and 325 μg/m2/day in the different treatment cycles. Serum GM-CSF concentration was measured (ELISA) before and 3–4 h after (peak serum concentration) GM-CSF administration days 1, 5 and 10. Prior to therapy, GM-CSF was not detectable in serum. Following repeated daily administrations, the peak serum concentration of GM-CSF gradually decreased on days 5 and 10 compared to day 1 (< 0.05). During a 10-day treatment cycle, the total number of leukocytes, neutrophils, eosinophils, monocytes and lymphocytes increased. A dose-dependent increment in total white blood cell count and neutrophils was observed. The total numbers of GM-CSF receptor (α-subunit) expressing cells (granulocytes and monocytes) increased significantly during treatment while a transient decline in expression intensity was observed at day 5, suggesting a receptor-mediated removal of GM-CSF as a mechanism for the elimination of GM-CSF from circulation. ADCC of peripheral mononuclear cells was decreased at day 10 compared to baseline. An inverse correlation between the dose and ADCC was noted. The data might indicate that high doses of GM-CSF may have a negative impact on ADCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Armitage JO (1998) Emerging applications of recombinant human granulocyte-macrophage colony-stimulating factor. Blood 92(12):4491–4508

    PubMed  CAS  Google Scholar 

  2. Aweeka FT, Kwong M, Mak M, al-Uzri A, Affrime M, Cutler D, Kahn J, Gambertoglio JG (1996) Pharmacokinetics of recombinant human granulocyte-macrophage colony-stimulating factor: the effects of zidovudine. J Clin Pharmacol 36(12):1107–1113

    PubMed  CAS  Google Scholar 

  3. Baselga J, Arteaga CL (2005) Critical update and emerging trends in epidermal growth factor receptor targeting in cancer. J Clin Oncol 23(11):2445–2459

    Article  PubMed  CAS  Google Scholar 

  4. Bukowski RM, Budd GT, Gibbons JA, Bauer RJ, Childs A, Antal J, Finke J, uason L, Lorenzi V, McLain D, et al (1994) Phase I trial of subcutaneous recombinant macrophage colony-stimulating factor: clinical and immunomodulatory effects. J Clin Oncol 12(1):97–106

    PubMed  CAS  Google Scholar 

  5. Burgess AW, Begley CG, Johnson GR, Lopez AF, Williamson DJ, Mermod JJ, Simpson RJ, Schmitz A, DeLamarter JF (1987) Purification and properties of bacterially synthesized human granulocyte-macrophage colony stimulating factor. Blood 69(1):43–51

    PubMed  CAS  Google Scholar 

  6. Cannistra SA, Groshek P, Garlick R, Miller J, Griffin JD (1990) Regulation of surface expression of the granulocyte/macrophage colony-stimulating factor receptor in normal human myeloid cells. Proc Natl Acad Sci U S A 87(1):93–97

    Article  PubMed  CAS  Google Scholar 

  7. Cebon J, Dempsey P, Fox R, Kannourakis G, Bonnem E, Burgess AW, Morstyn G (1988) Pharmacokinetics of human granulocyte-macrophage colony-stimulating factor using a sensitive immunoassay. Blood 72(4):1340–1347

    PubMed  CAS  Google Scholar 

  8. Cebon JS, Bury RW, Lieschke GJ, Morstyn G (1990) The effects of dose and route of administration on the pharmacokinetics of granulocyte-macrophage colony-stimulating factor. Eur J Cancer 26(10):1064–1069

    Article  PubMed  CAS  Google Scholar 

  9. Chachoua A, Oratz R, Hoogmoed R, Caron D, Peace D, Liebes L, Blum RH, Vilcek J (1994) Monocyte activation following systemic administration of granulocyte-macrophage colony-stimulating factor. J Immunother Emphasis Tumor Immunol 15(3):217–224

    PubMed  CAS  Google Scholar 

  10. Collins TS, Hurwitz HI (2005) Targeting vascular endothelial growth factor and angiogenesis for the treatment of colorectal cancer. Semin Oncol 32(1):61–68

    Article  PubMed  CAS  Google Scholar 

  11. Gregory B, Kirchem A, Phipps S, Gevaert P, Pridgeon C, Rankin SM, Robinson DS (2003) Differential regulation of human eosinophil IL-3, IL-5, and GM-CSF receptor alpha-chain expression by cytokines: IL-3, IL-5, and GM-CSF down-regulate IL-5 receptor alpha expression with loss of IL-5 responsiveness, but up-regulate IL-3 receptor alpha expression. J Immunol 170(11):5359–5366

    PubMed  CAS  Google Scholar 

  12. Gribben JG, Devereux S, Thomas NS, Keim M, Jones HM, Goldstone AH, Linch DC (1990) Development of antibodies to unprotected glycosylation sites on recombinant human GM-CSF. Lancet 335(8687):434–437

    Article  PubMed  CAS  Google Scholar 

  13. Hellman C, Lonnkvist K, Hedlin G, Hallden G, Lundahl J (2002) Down-regulated IL-5 receptor expression on peripheral blood eosinophils from budesonide-treated children with asthma. Allergy 57(4):323–328

    Article  PubMed  CAS  Google Scholar 

  14. Herlyn M, Steplewski Z, Herlyn D, Koprowski H (1979) Colorectal carcinoma-specific antigen: detection by means of monoclonal antibodies. Proc Natl Acad Sci U S A 76(3):1438–1442

    Article  PubMed  CAS  Google Scholar 

  15. Hovgaard D, Mortensen BT, Schifter S, Nissen NI (1993) Comparative pharmacokinetics of single-dose administration of mammalian and bacterially-derived recombinant human granulocyte-macrophage colony-stimulating factor. Eur J Haematol 50(1):32–36

    Article  PubMed  CAS  Google Scholar 

  16. Kuwabara T, Kobayashi S, Sugiyama Y (1996) Pharmacokinetics and pharmacodynamics of a recombinant human granulocyte colony-stimulating factor. Drug Metab Rev 28(4):625–658

    Article  PubMed  CAS  Google Scholar 

  17. Lieschke GJ, Burgess AW (1992) Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor (2). N Engl J Med 327(2):99–106

    Article  PubMed  CAS  Google Scholar 

  18. Liljefors M, Nilsson B, Fagerberg J, Ragnhammar P, Mellstedt H, Frodin J-E (2005) Clinical effects of a chimeric anti-EpCAM monoclonal antibody in combination with granulocyte-macrophage colony-stimulating factor in patients with metastatic colorectal carcinoma. Int J Oncol 26(6):1581–1589

    PubMed  CAS  Google Scholar 

  19. Liljefors M, Ragnhammar P, Nilsson B, Ullenhag G, Mellstedt H, Frodin J-E (2004) Anti-EpCAM monoclonal antibody (MAb17-1A) based treatment combined with alpha-interferon, 5-fluorouracil and granulocyte-macrophage colony-stimulating factor in patients with metastatic colorectal carcinoma. Int J Oncol 25(3):703–711

    PubMed  CAS  Google Scholar 

  20. Martinez-Moczygemba M, Huston DP (2003) Biology of common beta receptor-signaling cytokines: IL-3, IL-5, and GM-CSF. J Allergy Clin Immunol 112(4):653–665; quiz 666

    Google Scholar 

  21. Masucci G, Wersall P, Ragnhammar P, Mellstedt H (1989) Granulocyte-monocyte-colony-stimulating factor augments the cytotoxic capacity of lymphocytes and monocytes in antibody-dependent cellular cytotoxicity. Cancer Immunol Immunother 29(4):288–292

    Article  PubMed  CAS  Google Scholar 

  22. Mellstedt H (2003) Monoclonal antibodies in human cancer. Drugs Today (Barc) 39(Suppl C):1–16

    CAS  Google Scholar 

  23. Mellstedt H, Fagerberg J, Frodin J-E, Henriksson L, Hjelm-Skog A-L, Liljefors M, Ragnhammar P, Shetye J, Osterborg A (1999) Augmentation of the immune response with granulocyte-macrophage colony-stimulating factor and other hematopoietic growth factors. Curr Opin Hematol 6(3):169–175

    Article  PubMed  CAS  Google Scholar 

  24. Metcalf D, Nicola NA, Mifsud S, Di Rago L (1999) Receptor clearance obscures the magnitude of granulocyte-macrophage colony-stimulating factor responses in mice to endotoxin or local infections. Blood 93(5):1579–1585

    PubMed  CAS  Google Scholar 

  25. Molineux G (2004) The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta). Curr Pharm Des 10(11):1235–1244

    Article  PubMed  CAS  Google Scholar 

  26. Muller CE, Mukodzi S, Reddemann H (1999) Relationships of cytokine (GM-CSF) serum concentration to blood cell count and the inflammatory parameters in children with malignant diseases. Pediatr Hematol Oncol 16(6):509–518

    Article  PubMed  CAS  Google Scholar 

  27. Pardoll DM (2000) Therapeutic vaccination for cancer. Clin Immunol 95(1 Pt 2):S44–S62

    Article  PubMed  CAS  Google Scholar 

  28. Parmiani G, Castelli C, Pilla L, Santinami M, Colombo MP, Rivoltini L (2007) Opposite immune functions of GM-CSF administered as vaccine adjuvant in cancer patients. Ann Oncol 18:226–232

    Article  PubMed  CAS  Google Scholar 

  29. Ragnhammar P, Masucci G, Frodin J-E, Hjelm A-L, Mellstedt H (1992) Cytotoxic functions of blood mononuclear cells in patients with colorectal carcinoma treated with mAb 17-1A and granulocyte/macrophage-colony-stimulating factor. Cancer Immunol Immunother 35(3):158–164

    Article  PubMed  CAS  Google Scholar 

  30. Ragnhammar P, Fagerberg J, Frodin J-E, Hjelm A-L, Lindemalm C, Magnusson I, Masucci G, Mellstedt H (1993) Effect of monoclonal antibody 17-1A and GM-CSF in patients with advanced colorectal carcinoma—long-lasting, complete remissions can be induced. Int J Cancer 53(5):751–758

    Article  PubMed  CAS  Google Scholar 

  31. Ragnhammar P, Friesen HJ, Frodin J-E, Lefvert AK, Hassan M, Osterborg A, Mellstedt H (1994) Induction of anti-recombinant human granulocyte-macrophage colony-stimulating factor (Escherichia coli-derived) antibodies and clinical effects in nonimmunocompromised patients. Blood 84(12):4078–4087

    PubMed  CAS  Google Scholar 

  32. Ragnhammar P, Frodin J-E, Trotta PP, Mellstedt H (1994) Cytotoxicity of white blood cells activated by granulocyte-colony-stimulating factor, granulocyte/macrophage-colony-stimulating factor and macrophage-colony-stimulating factor against tumor cells in the presence of various monoclonal antibodies. Cancer Immunol Immunother 39(4):254–262

    Article  PubMed  CAS  Google Scholar 

  33. Serafini P, Carbley R, Noonan KA, Tan G, Bronte V, Borrello I (2004) High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res 64(17):6337–6343

    Article  PubMed  CAS  Google Scholar 

  34. Shaw DR, Khazaeli MB, Sun LK, Ghrayeb J, Daddona PE, McKinney S, LoBuglio AF (1987) Characterization of a mouse/human chimeric monoclonal antibody (17-1A) to a colon cancer tumor-associated antigen. J Immunol 138(12):4534–4538

    PubMed  CAS  Google Scholar 

  35. Stute N, Furman WL, Schell M, Evans WE (1995) Pharmacokinetics of recombinant human granulocyte-macrophage colony-stimulating factor in children after intravenous and subcutaneous administration. J Pharm Sci 84(7):824–828

    Article  PubMed  CAS  Google Scholar 

  36. Thompson JA, Lee DJ, Kidd P, Rubin E, Kaufmann J, Bonnem EM, Fefer A (1989) Subcutaneous granulocyte-macrophage colony-stimulating factor in patients with myelodysplastic syndrome: toxicity, pharmacokinetics, and hematological effects. J Clin Oncol 7(5):629–637

    PubMed  CAS  Google Scholar 

  37. Ullenhag G, Bird C, Ragnhammar P, Frodin J-E, Strigard K, Osterborg A, Thorpe R, Mellstedt H, Wadhwa M (2001) Incidence of GM-CSF antibodies in cancer patients receiving GM-CSF for immunostimulation. Clin Immunol 99(1):65–74

    Article  PubMed  CAS  Google Scholar 

  38. Wadhwa M, Skog A-L, Bird C, Ragnhammar P, Liljefors M, Gaines-Das R, Mellstedt H, Thorpe R (1999) Immunogenicity of granulocyte-macrophage colony-stimulating factor (GM-CSF) products in patients undergoing combination therapy with GM-CSF. Clin Cancer Res 5(6):1353–1361

    PubMed  CAS  Google Scholar 

  39. Weiner GJ, Link BK (2004) Antibody therapy of lymphoma. Adv Pharmacol 51:229–253

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Swedish Cancer Society, Cancer Society in Stockholm, King Gustav V Jubilee Fund, Cancer and Allergy Foundation, Torsten and Ragnar Söderberg Foundation and Karolinska Institute Foundations. We thank Lena Virving, Birgitta Hagström and Juan Castro for skillful technical assistance and Leila Relander for excellent typing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Håkan Mellstedt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liljefors, M., Nilsson, B., Mellstedt, H. et al. Influence of varying doses of granulocyte-macrophage colony-stimulating factor on pharmacokinetics and antibody-dependent cellular cytotoxicity. Cancer Immunol Immunother 57, 379–388 (2008). https://doi.org/10.1007/s00262-007-0377-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-007-0377-1

Keywords

Navigation