Skip to main content

Advertisement

Log in

Virulizin, a novel immunotherapy agent, activates NK cells through induction of IL-12 expression in macrophages

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Virulizin, a novel biological response modifier, has demonstrated significant antitumor efficacy in a variety of human tumor xenograft models including melanoma, pancreatic cancer, breast cancer, ovarian cancer and prostate cancer. The significant role of macrophages and NK (Natural killer) cells was implicated in the antitumor mechanism of Virulizin where expansion as well as increased activity of macrophages and NK cells were observed in mice treated with Virulizin. Depletion of macrophages compromised Virulizin-induced NK1.1+ cell infiltration into xenografted tumors and was accompanied by reduced antitumor efficacy. In the present study, involvement of macrophages in NK cell activation was investigated further. We found that depletion of NK cells in CD-1 nude mice by anti-ASGM1 antibody significantly compromised the antitumor activity of Virulizin. Cytotoxicity of NK cells isolated from Virulizin-treated mice was enhanced against NK-sensitive YAC-1 cells and C8161 human melanoma cells, but not against NK-insensitive P815 cells. An increased level of IL-12β was observed in the serum of mice treated with Virulizin. IL-12 mRNA and protein levels were also increased in peritoneal macrophages isolated from Virulizin-treated mice. Moreover, Virulizin-induced cytotoxic activity of NK cells isolated from the spleen was abolished when an IL-12 neutralizing antibody was co-administered. In addition, depletion of macrophages in mice significantly impaired Virulizin-induced NK cell cytotoxicty. Taken together, the results suggest that Virulizin induces macrophage IL-12 production, which in turn stimulates NK cell-mediated antitumor activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Du C, Feng N, Jin H, Lee V, Wang M, Wright JA, Young AH (2003) Macrophages play a critical role in the anti-tumor activity of Virulizin. Int J Oncol 23:1341–1346

    CAS  PubMed  Google Scholar 

  2. Liu C, Ferdinandi ES, Ely G, Joshi SS (2000) Virulizin-2gamma, a novel immunotherapeutic agent, in treatment of human pancreatic cancer xenografts. Int J Oncol 16:1015–1020

    CAS  PubMed  Google Scholar 

  3. Feng N, Jin H, Wang M, Du C, Wright JA, Young AH (2003) Antitumor activity of Virulizin, a novel biological response modifier (BRM) in a panel of human pancreatic cancer and melanoma xenografts. Cancer Chemother Pharmacol 51:247–255

    CAS  PubMed  Google Scholar 

  4. Ferdinandi ES, Braun DP, Liu C, Zee BC, Ely G (1999) Virulizin(R)—a review of its antineoplastic activity. Expert Opin Investig Drugs 8:1721–1735

    Article  CAS  PubMed  Google Scholar 

  5. Cao MY, Lee Y, Feng N, Li H, Du C, Miao D, Li J, Lee V, Jin H, Wang M, Gu X, Wright JA, Young AH (2005) NK cell activation and tumor infiltration are involved in the antitumor mechanism of Virulizin. Cancer Immunol Immunother 54:229–242

    Article  CAS  PubMed  Google Scholar 

  6. Whiteside TL, Herberman RB (1995) The role of natural killer cells in immune surveillance of cancer. Curr Opin Immunol 7:704–710

    Article  CAS  PubMed  Google Scholar 

  7. Smyth MJ, Hayakawa Y, Takeda K, Yagita H (2002) New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2:850–861

    Article  CAS  PubMed  Google Scholar 

  8. Albertsson PA, Basse PH, Hokland M, Goldfarb RH, Nagelkerke JF, Nannmark U, Kuppen PJ (2003) NK cells and the tumour microenvironment: implications for NK-cell function and anti-tumour activity. Trends Immunol 24:603–609

    Article  CAS  PubMed  Google Scholar 

  9. Ljunggren HG, Karre K (1985) Host resistance directed selectively against H-2-deficient lymphoma variants. Analysis of the mechanism. J Exp Med 162:1745–1759

    Article  CAS  PubMed  Google Scholar 

  10. Karre K, Ljunggren HG, Piontek G, Kiessling R (1986) Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319:675–678

    Article  CAS  PubMed  Google Scholar 

  11. van den Broek MF, Kagi D, Zinkernagel RM, Hengartner H (1995) Perforin dependence of natural killer cell-mediated tumor control in vivo. Eur J Immunol 25:3514–3516

    PubMed  Google Scholar 

  12. Smyth MJ, Thia KY, Cretney E, Kelly JM, Snook MB, Forbes CA, Scalzo AA (1999) Perforin is a major contributor to NK cell control of tumor metastasis. J Immunol 162:6658–6662

    CAS  PubMed  Google Scholar 

  13. Yu TK, Caudell EG, Smid C, Grimm EA (2000) IL-2 activation of NK cells: involvement of MKK1/2/ERK but not p38 kinase pathway. J Immunol 164:6244–6251

    CAS  PubMed  Google Scholar 

  14. Frederick M, Grimm E, Krohn E, Smid C, Yu TK (1997) Cytokine-induced cytotoxic function expressed by lymphocytes of the innate immune system: distinguishing characteristics of NK and LAK based on functional and molecular markers. J Interferon Cytokine Res 17:435–447

    CAS  PubMed  Google Scholar 

  15. Herberman RB, Reynolds CW, Ortaldo JR (1986) Mechanism of cytotoxicity by natural killer (NK) cells. Annu Rev Immunol 4:651–680

    Article  CAS  PubMed  Google Scholar 

  16. Smyth MJ, Taniguchi M, Street SE (2000) The anti-tumor activity of IL-12: mechanisms of innate immunity that are model and dose dependent. J Immunol 165:2665–2670

    CAS  PubMed  Google Scholar 

  17. Carson WE, Fehniger TA, Haldar S, Eckhert K, Lindemann MJ, Lai CF, Croce CM, Baumann H, Caligiuri MA (1997) A potential role for interleukin-15 in the regulation of human natural killer cell survival. J Clin Invest 99:937–943

    CAS  PubMed  Google Scholar 

  18. Carson WE, Giri JG, Lindemann MJ, Linett ML, Ahdieh M, Paxton R, Anderson D, Eisenmann J, Grabstein K, Caligiuri MA (1994) Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J Exp Med 180:1395–1403

    Article  CAS  PubMed  Google Scholar 

  19. Kobayashi M, Fitz L, Ryan M, Hewick RM, Clark SC, Chan S, Loudon R, Sherman F, Perussia B, Trinchieri G (1989) Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med 170:827–845

    Article  CAS  PubMed  Google Scholar 

  20. Chan SH, Perussia B, Gupta JW, Kobayashi M, Pospisil M, Young HA, Wolf SF, Young D, Clark SC, Trinchieri G (1991) Induction of interferon gamma production by natural killer cell stimulatory factor: characterization of the responder cells and synergy with other inducers. J Exp Med 173:869–879

    Article  CAS  PubMed  Google Scholar 

  21. Kodama T, Takeda K, Shimozato O, Hayakawa Y, Atsuta M, Kobayashi K, Ito M, Yagita H, Okumura K (1999) Perforin-dependent NK cell cytotoxicity is sufficient for anti-metastatic effect of IL-12. Eur J Immunol 29:1390–1396

    Article  CAS  PubMed  Google Scholar 

  22. Nanni P, Rossi I, De Giovanni C, Landuzzi L, Nicoletti G, Stoppacciaro A, Parenza M, Colombo MP, Lollini PL (1998) Interleukin 12 gene therapy of MHC-negative murine melanoma metastases. Cancer Res 58:1225–1230

    CAS  PubMed  Google Scholar 

  23. Fan X, Sibalic V, Niederer E, Wuthrich RP (1996) The proinflammatory cytokine interleukin-12 occurs as a cell membrane-bound form on macrophages. Biochem Biophys Res Commun 225:1063–1067

    Article  CAS  PubMed  Google Scholar 

  24. Kato T, Yamane H, Nariuchi H (1997) Differential effects of LPS and CD40 ligand stimulations on the induction of IL-12 production by dendritic cells and macrophages. Cell Immunol 181:59–67

    Article  CAS  PubMed  Google Scholar 

  25. Blotta MH, DeKruyff RH, Umetsu DT (1997) Corticosteroids inhibit IL-12 production in human monocytes and enhance their capacity to induce IL-4 synthesis in CD4+ lymphocytes. J Immunol 158:5589–5595

    CAS  PubMed  Google Scholar 

  26. Krug A, Towarowski A, Britsch S, Rothenfusser S, Hornung V, Bals R, Giese T, Engelmann H, Endres S, Krieg AM, Hartmann G (2001) Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur J Immunol 31:3026–3037

    Article  CAS  PubMed  Google Scholar 

  27. Kang K, Kubin M, Cooper KD, Lessin SR, Trinchieri G, Rook AH (1996) IL-12 synthesis by human Langerhans cells. J Immunol 156:1402–1407

    CAS  PubMed  Google Scholar 

  28. Yawalkar N, Limat A, Brand CU, Braathen LR (1996) Constitutive expression of both subunits of interleukin-12 in human keratinocytes. J Invest Dermatol 106:80–83

    Article  CAS  PubMed  Google Scholar 

  29. Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3:133–146

    Article  CAS  PubMed  Google Scholar 

  30. van Rooijen N, van Kesteren-Hendrikx E (2003) “In vivo” depletion of macrophages by liposome-mediated “suicide”. Methods Enzymol 373:3–16

    PubMed  Google Scholar 

  31. Costello RT, Fauriat C, Sivori S, Marcenaro E, Olive D (2004) NK cells: innate immunity against hematological malignancies? Trends Immunol 25:328–333

    Article  CAS  PubMed  Google Scholar 

  32. Shaw SG, Maung AA, Steptoe RJ, Thomson AW, Vujanovic NL (1998) Expansion of functional NK cells in multiple tissue compartments of mice treated with Flt3-ligand: implications for anti-cancer and anti-viral therapy. J Immunol 161:2817–2824

    CAS  PubMed  Google Scholar 

  33. Smith DL, Cai J, Zhu S, Wei W, Fukumoto J, Sharma S, Masood R, Gill PS (2003) Natural killer cell cytolytic activity is necessary for in vivo antitumor activity of the dipeptide L-glutamyl-L-tryptophan. Int J Cancer 106:528–533

    Article  CAS  PubMed  Google Scholar 

  34. Ahlberg R, MacNamara B, Andersson M, Zheng C, Svensson A, Holm G, Hansson M, Porwit-MacDonald A, Bjorkholm M, Sundblad A (2003) Stimulation of T-cell cytokine production and NK-cell function by IL-2, IFN-alpha and histamine treatment during remission of non-Hodgkin’s lymphoma. Hematol J 4:336–341

    Article  CAS  Google Scholar 

  35. Lehmann C, Zeis M, Uharek L (2001) Activation of natural killer cells with interleukin 2 (IL-2) and IL-12 increases perforin binding and subsequent lysis of tumour cells. Br J Haematol 114:660–665

    Article  CAS  PubMed  Google Scholar 

  36. Trinchieri G (1998) Proinflammatory and immunoregulatory functions of interleukin-12. Int Rev Immunol 16:365–396

    CAS  PubMed  Google Scholar 

  37. Wolf SF, Temple PA, Kobayashi M, Young D, Dicig M, Lowe L, Dzialo R, Fitz L, Ferenz C, Hewick RM et al (1991) Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells. J Immunol 146:3074–3081

    CAS  PubMed  Google Scholar 

  38. Brunda MJ, Luistro L, Warrier RR, Wright RB, Hubbard BR, Murphy M, Wolf SF, Gately MK (1993) Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J Exp Med 178:1223–1230

    Article  CAS  PubMed  Google Scholar 

  39. Zou JP, Yamamoto N, Fujii T, Takenaka H, Kobayashi M, Herrmann SH, Wolf SF, Fujiwara H, Hamaoka T (1995) Systemic administration of rIL-12 induces complete tumor regression and protective immunity: response is correlated with a striking reversal of suppressed IFN-gamma production by anti-tumor T cells. Int Immunol 7:1135–1145

    CAS  PubMed  Google Scholar 

  40. Trinchieri G (1995) Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol 13:251–276

    CAS  PubMed  Google Scholar 

  41. Sugaya M, Nakamura K, Tamaki K (1999) Interleukins 18 and 12 synergistically upregulate interferon-gamma production by murine dendritic epidermal T cells. J Invest Dermatol 113:350–354

    Article  CAS  PubMed  Google Scholar 

  42. Tominaga K, Yoshimoto T, Torigoe K, Kurimoto M, Matsui K, Hada T, Okamura H, Nakanishi K (2000) IL-12 synergizes with IL-18 or IL-1beta for IFN-gamma production from human T cells. Int Immunol 12:151–160

    Article  CAS  PubMed  Google Scholar 

  43. Puddu P, Fantuzzi L, Borghi P, Varano B, Rainaldi G, Guillemard E, Malorni W, Nicaise P, Wolf SF, Belardelli F, Gessani S (1997) IL-12 induces IFN-gamma expression and secretion in mouse peritoneal macrophages. J Immunol 159:3490–3497

    CAS  PubMed  Google Scholar 

  44. Voest EE, Kenyon BM, O’Reilly MS, Truitt G, D’Amato RJ, Folkman J (1995) Inhibition of angiogenesis in vivo by interleukin 12. J Natl Cancer Inst 87:581–586

    CAS  PubMed  Google Scholar 

  45. Brombacher F, Kastelein RA, Alber G (2003) Novel IL-12 family members shed light on the orchestration of Th1 responses. Trends Immunol 24:207–212

    Article  CAS  PubMed  Google Scholar 

  46. Trapani JA, Davis J, Sutton VR, Smyth MJ (2000) Proapoptotic functions of cytotoxic lymphocyte granule constituents in vitro and in vivo. Curr Opin Immunol 12:323–329

    Article  CAS  PubMed  Google Scholar 

  47. Shresta S, Pham CT, Thomas DA, Graubert TA, Ley TJ (1998) How do cytotoxic lymphocytes kill their targets? Curr Opin Immunol 10:581–587

    Article  CAS  PubMed  Google Scholar 

  48. Berke G (1994) The binding and lysis of target cells by cytotoxic lymphocytes: molecular and cellular aspects. Annu Rev Immunol 12:735–773

    Article  CAS  PubMed  Google Scholar 

  49. Vujanovic NL, Nagashima S, Herberman RB, Whiteside TL (1996) Nonsecretory apoptotic killing by human NK cells. J Immunol 157:1117–1126

    CAS  PubMed  Google Scholar 

  50. Henkart PA, Sitkovsky MV (1994) Cytotoxic lymphocytes. Two ways to kill target cells. Curr Biol 4:923–925

    Article  CAS  PubMed  Google Scholar 

  51. Kelly JM, Darcy PK, Markby JL, Godfrey DI, Takeda K, Yagita H, Smyth MJ (2002) Induction of tumor-specific T cell memory by NK cell-mediated tumor rejection. Nat Immunol 3:83–90

    Article  CAS  PubMed  Google Scholar 

  52. Moretta A, Bottino C, Mingari MC, Biassoni R, Moretta L (2002) What is a natural killer cell? Nat Immunol 3:6–8

    Article  CAS  PubMed  Google Scholar 

  53. Salcedo TW, Azzoni L, Wolf SF, Perussia B (1993) Modulation of perforin and granzyme messenger RNA expression in human natural killer cells. J Immunol 151:2511–2520

    CAS  PubMed  Google Scholar 

  54. Uharek L, Zeis M, Glass B, Steinmann J, Dreger P, Gassmann W, Schmitz N, Muller-Ruchholtz W (1996) High lytic activity against human leukemia cells after activation of allogeneic NK cells by IL-12 and IL-2. Leukemia 10:1758–1764

    CAS  PubMed  Google Scholar 

  55. Lehmann C, Zeis M, Schmitz N, Uharek L (2000) Impaired binding of perforin on the surface of tumor cells is a cause of target cell resistance against cytotoxic effector cells. Blood 96:594–600

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Welch D. R. for his gift of the human melanoma cell line C8161. We also thank Mr. Liu P. for technical assistance, Dr. Vassilakos A. and members of Lorus Therapeutics Inc. for helpful discussion and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Y. Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Cao, M.Y., Lee, Y. et al. Virulizin, a novel immunotherapy agent, activates NK cells through induction of IL-12 expression in macrophages. Cancer Immunol Immunother 54, 1115–1126 (2005). https://doi.org/10.1007/s00262-005-0698-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-005-0698-x

Keywords

Navigation