Skip to main content

Advertisement

Log in

l-Ascorbic acid (vitamin C) induces the apoptosis of B16 murine melanoma cells via a caspase-8–independent pathway

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

l-Ascorbic acid (vitamin C) has been reported to play a role in the treatment and prevention of cancer. However, its specific mechanistic pathways remain obscure. This study was carried out to identify the sodium ascorbate–induced apoptotic pathway in B16F10 murine melanoma cells. Sodium ascorbate was found to induce the apoptosis of B16F10 murine melanoma in a time- and dose-dependent manner, and this was prevented by pretreatment with N-acetyl-l-cysteine (NAC), a well-known antioxidant. In fact, sodium ascorbate–treated B16F10 melanoma cells showed increased intracellular reactive oxygen species generation (ROS) levels. These results indicate that sodium ascorbate induced apoptosis in B16F10 murine melanoma cells by acting as a prooxidant. We examined the involvement of caspase-8 using a specific caspase-8 inhibitor (z-IETD-fmk) on the sodium ascorbate–induced apoptotic pathway. Cell death was found not to be inhibited by z-IETD-fmk treatment, indicating that sodium ascorbate–induced apoptosis is not mediated by caspase-8. In addition, we detected a reduction in the mitochondrial membrane potential during apoptosis and confirmed cytochrome-c release from mitochondria by immunoblotting. Taken together, it appears that the induction of a prooxidant state by sodium ascorbate and a subsequent reduction in mitochondrial membrane potential are involved in the apoptotic pathway of B16F10 murine melanoma cells, and that this occurs in a caspase-8–independent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2A, B.
Fig. 3A–F.
Fig. 4.

Similar content being viewed by others

Abbreviations

NAC:

N-acetyl-l-cysteine

ROS:

reactive oxygen species

Δψm :

mitochondrial membrane potential

References

  1. Afansev VN, Korol BA, Mantsygin YA (1986) Flow cytometry and biochemical analysis of DNA degradation characteristic of two types of cell death. FEBS Letter 194:347

    Article  Google Scholar 

  2. Bram S, Froussard P, Guichard M, Jasmin C, Augery Y, Sinoussi-Barre F, Wray W (1980) Vitamin C preferential toxicity for malignant melanoma cells. Nature 284:629

    CAS  PubMed  Google Scholar 

  3. De Pauw-Gillet MC, Siwek B, Pozzi G, Sabbioni E, Bassleer RJ (1990) Control of B16F10 melanoma cells differentiation and proliferation by CuSO4 and vitamin C. Anticancer Res 10:391

    PubMed  Google Scholar 

  4. De Pauw-Gillet MC, Siwek B, Pozzi G, Sabbioni E, Bassleer RJ (1990) Effects of Fe SO4 on B16F10 melanoma cells differentiation and proliferation. Anticancer Res 10:1029

    PubMed  Google Scholar 

  5. Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33

    PubMed  Google Scholar 

  6. Ferrone S, Marincola FM (1995) Loss of HLA class I antigens by melanoma cells: molecular mechanisms, functional significance and clinical relevance. Immunol Today 16:487

    CAS  PubMed  Google Scholar 

  7. Gardiner NS, Duncan JR (1988) Enhanced prostaglandin synthesis as a mechanism for inhibition of melanoma cell growth by ascorbic acid. Prostaglandins Leukot Essent Fatty Acids 34:119

    CAS  PubMed  Google Scholar 

  8. Gardiner NS, Duncan JR (1989) Inhibition of murine melanoma growth by sodium ascorbate. J Nutr 119:586

    CAS  PubMed  Google Scholar 

  9. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309

    CAS  PubMed  Google Scholar 

  10. Green D, Kroemer G (1998) The central executioners of apoptosis: caspases or mitochondria? Trends Cell Biol 8:267

    Google Scholar 

  11. Hahne M, Rimoldi D, Schroter M, Romero P, Schreiter M, French LE (1996) Melanoma cell expression of Fas (Apo-1/CD95) ligand: implications for tumor immune escape. Science 274:1363

    CAS  PubMed  Google Scholar 

  12. Huber D, Philipp J, Fontana A (1998) Protease inhibitors interfere with the transforming growth factor-beta-dependent but not the transforming growth factor beta-independent pathway of tumor cell-mediated immunosuppression. J Immunol 148:277

    Google Scholar 

  13. Krammer PH (2000) CD95's deadly mission in the immune system. Nature 407:789

    Article  CAS  PubMed  Google Scholar 

  14. Kroemer, G., N. Zamzami, S. A. Susin (1997) Mitochondrial control of apoptosis. Immunol Today 18:44

    CAS  PubMed  Google Scholar 

  15. Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95

    CAS  PubMed  Google Scholar 

  16. Liu X., Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell free extracts: requirement for dATP and cytochrome c. Cell 86:147

    CAS  PubMed  Google Scholar 

  17. Marczewska J, Koziorowska JH, Anuszewska EL (2000) Influence of ascorbic acid on cytotoxic activity of copper and iron ions in vitro. Acta Pol Pharm 57:415

    CAS  PubMed  Google Scholar 

  18. Mukherji B, Chakraborty NG (1995) Immunobiology and immunotherapy of melanoma. Curr Opin Oncol 7:175

    CAS  PubMed  Google Scholar 

  19. Nicholson DW, Thornberry NA (1997) Caspases: killer proteases. Trends Biochem Sci 22:299

    CAS  PubMed  Google Scholar 

  20. Nungester WJ, Ames AM (1948) The relationship between ascorbic acid and phagocytic activity. J Infect Dis 83:50

    CAS  Google Scholar 

  21. Peter ME, Krammer PH (1998) Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis. Curr Opin Immunol 10:545

    CAS  PubMed  Google Scholar 

  22. Savill J, Fadok V, Henson P (1993) Phagocyte recognition of cells undergoing apoptosis. Immunol Today 14:131

    CAS  PubMed  Google Scholar 

  23. Siegel BV (1975) Enhancement of interferon production by poly(rl)poly(rC) in mouse cell cultures by ascorbic acid. Nature 254:531

    CAS  PubMed  Google Scholar 

  24. Stockinger HE (1977) The case for carcinogen TLVs continues strong. Int J Occup Health Saf 46:54

    Google Scholar 

  25. Stone I (1980) The possible role of mega-ascorbate in the endogenous synthesis of interferon. Med Hypotheses 6:309

    CAS  PubMed  Google Scholar 

  26. Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R (2001) A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 8:613

    CAS  PubMed  Google Scholar 

  27. Thornberry NA, Lazebnik Y (1998) Caspases, enemies within. Science 281:1312

    Article  CAS  PubMed  Google Scholar 

  28. Verhagen AM, Silke J, Ekert PG, Pakusch M, Kaufmann H, Connolly LM, Day CL, Tikoo A, Burke R, Wrobel C, Moritz RL, Simpson RJ, Vaux DL (2002) HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem 277:445

    Article  CAS  PubMed  Google Scholar 

  29. Victor VV, Guayerbas N, Puerto M, Medina S, De la Fuente M (2000) Ascorbic acid modulates in vitro the function of macrophages from mice with endotoxic shock. Immunopharmacology 46:89

    Article  CAS  PubMed  Google Scholar 

  30. Wang J, Chun HJ, Wong W, Spencer DM, Lenardo MJ (2001) Caspase-10 is an initiator caspase in death receptor signaling. Proc Natl Acad Sci USA 98:13884

    Article  CAS  PubMed  Google Scholar 

  31. Wyllie AH, Morrid RG, Smith AL (1998) Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J Pathol 142:67

    Google Scholar 

  32. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Pen T-I, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked, Science 275:1129–1132

    Google Scholar 

  33. Zoratti M, Szabo I (1995) The mitochondrial permeability transition. Biochim Biophys Acta 1241:139

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study is supported by the grant from Korea Eundan Company

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Jae Lee.

Additional information

Jae Seung Kang and Daeho Cho contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, J.S., Cho, D., Kim, YI. et al. l-Ascorbic acid (vitamin C) induces the apoptosis of B16 murine melanoma cells via a caspase-8–independent pathway. Cancer Immunol Immunother 52, 693–698 (2003). https://doi.org/10.1007/s00262-003-0407-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-003-0407-6

Keywords

Navigation