Skip to main content
Log in

Value of bimodal 18F-choline-PET/MRI and trimodal 18F-choline-PET/MRI/TRUS for the assessment of prostate cancer recurrence after radiation therapy and radical prostatectomy

  • Pictorial Essay
  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Between 27% and 53% of all patients who undergo radical prostatectomy (RP) or radiation therapy (RT) as the first-line treatment of prostate cancer (PCa) develop a biochemical recurrence. Imaging plays a pivotal role in restaging by helping to distinguish between local relapse and metastatic disease (i.e., lymph-node and skeletal metastases). At present, the most promising tools for assessing PCa patients with biochemical recurrence are multiparametric magnetic resonance imaging (mpMRI) and positron emission tomography (PET)/computed tomography (CT) with radio-labeled choline derivatives. The main advantage of mpMRI is its high diagnostic accuracy in detecting local recurrence, while choline-PET/CT is able to identify lymph-node metastases when they are not suspicious on morphological imaging. The most recent advances in the field of fusion imaging have shown that multimodal co-registration, synchronized navigation, and combined interpretation are more valuable than the individual; separate assessment offered by different diagnostic techniques. The objective of the present essay was to describe the value of bimodal choline-PET/mpMRI fusion imaging and trimodal choline-PET/mpMRI/transrectal ultrasound (TRUS) in the assessment of PCa recurrence after RP and RT. Bimodal choline-PET/mpMRI fusion imaging allows morphological, functional, and metabolic information to be combined, thereby overcoming the limitations of each separate imaging modality. In addition, trimodal real-time choline-PET/mpMRI/TRUS fusion imaging may be useful for the planning and real-time guidance of biopsy procedures in order to obtain histological confirmation of the local recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mottet N, Bellmunt J, Bolla M, et al. (2011) EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol 59:572–583. doi:10.1016/j.eururo.2011.01.025

    Article  PubMed  Google Scholar 

  2. De Visschere PJ, Vargas HA, Ost P, De Meerleer GO, Villeirs GM (2013) Imaging treated prostate cancer. Abdom Imaging 38:1431–1446. doi:10.1007/s00261-013-9998-3

    Article  PubMed  Google Scholar 

  3. Kitajima K, Murphy RC, Nathan MA (2013) Choline PET/CT for imaging prostate cancer: an update. Ann Nucl Med 27:581–591. doi:10.1007/s12149-013-0731-7

    Article  CAS  PubMed  Google Scholar 

  4. Martino P, Scattoni V, Galosi AB, et al. (2011) Role of imaging and biopsy to assess local recurrence after definitive treatment for prostate carcinoma (surgery, radiotherapy, cryotherapy, HIFU). World J Urol 29:595–605. doi:10.1007/s00345-011-0687-y

    Article  PubMed  Google Scholar 

  5. Beresford MJ, Gillatt D, Benson RJ, Ajithkumar T (2010) A systematic review of the role of imaging before salvage radiotherapy for post-prostatectomy biochemical recurrence. Clin Oncol (R Coll Radiol) 22:46–55. doi:10.1016/j.clon.2009.10.015

    Article  CAS  Google Scholar 

  6. Kitajima K, Murphy RC, Nathan MA, et al. (2014) Detection of recurrent prostate cancer after radical prostatectomy: comparison of 11C-choline PET/CT with pelvic multiparametric MR imaging with endorectal coil. J Nucl Med 55:223–232. doi:10.2967/jnumed.113.123018

    Article  CAS  PubMed  Google Scholar 

  7. Lecouvet FE, El Mouedden J, Collette L, et al. (2012) Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol 62:68–75. doi:10.1016/j.eururo.2012.02.020

    Article  PubMed  Google Scholar 

  8. Venkitaraman R, Cook GJ, Dearnaley DP, et al. (2009) Whole-body magnetic resonance imaging in the detection of skeletal metastases in patients with prostate cancer. J Med Imaging Radiat Oncol 53:241–247. doi:10.1111/j.1754-9485.2009.02070.x

    Article  CAS  PubMed  Google Scholar 

  9. Piccardo A, Paparo F, Picazzo R, et al. (2014) Value of fused 18F-Choline-PET/MRI to evaluate prostate cancer relapse in patients showing biochemical recurrence after EBRT: preliminary results. Biomed Res Int 2014:103718. doi:10.1155/2014/103718

    Article  PubMed Central  PubMed  Google Scholar 

  10. Fortuin A, de Rooij M, Zamecnik P, Haberkorn U, Barentsz J (2013) Molecular and functional imaging for detection of lymph node metastases in prostate cancer. Int J Mol Sci 14:13842–13875. doi:10.3390/ijms140713842

    Article  PubMed Central  PubMed  Google Scholar 

  11. Paparo F, Piccazzo R, Cevasco L, et al. (2014) Advantages of percutaneous abdominal biopsy under PET-CT/ultrasound fusion imaging guidance: a pictorial essay. Abdom Imaging 39:1102–1113. doi:10.1007/s00261-014-0143-8

  12. Park H, Wood D, Hussain H, et al. (2012) Introducing parametric fusion PET/MRI of primary prostate cancer. J Nucl Med 53:546–551. doi:10.2967/jnumed.111.091421

    Article  CAS  PubMed  Google Scholar 

  13. Ewertsen C, Saftoiu A, Gruionu LG, Karstrup S, Nielsen M (2013) Real-time image fusion involving diagnostic ultrasound. AJR Am J Roentgenol 200:249–255. doi:10.2214/AJR.12.8904

    Article  Google Scholar 

  14. Wetter A, Lipponer C, Nensa F, et al. (2013) Simultaneous 18F choline positron emission tomography/magnetic resonance imaging of the prostate: initial results. Invest Radiol 48:256–262. doi:10.1097/RLI.0b013e318282c654

    Article  PubMed  Google Scholar 

  15. Wetter A, Lipponer C, Nensa F, et al. (2014) Evaluation of the PET component of simultaneous [(18)F]choline PET/MRI in prostate cancer: comparison with [(18)F]choline PET/CT. Eur J Nucl Med Mol Imaging 41:79–88. doi:10.1007/s00259-013-2560-2

    Article  CAS  PubMed  Google Scholar 

  16. Pichler BJ, Wehrl HF, Kolb A, Judenhofer MS (2008) Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging? Semin Nucl Med 38:199–208. doi:10.1053/j.semnuclmed.2008.02.001

    Article  PubMed Central  PubMed  Google Scholar 

  17. Wetter A, Lipponer C, Nensa F, et al. (2014) Quantitative evaluation of bone metastases from prostate cancer with simultaneous [18F] choline PET/MRI: combined SUV and ADC analysis. Ann Nucl Med 28:405–410. doi:10.1007/s12149-014-0825-x

    Article  CAS  PubMed  Google Scholar 

  18. Abi-Jaoudeh N, Kruecker J, Kadoury S, et al. (2012) Multimodality image fusion-guided procedures: technique, accuracy, and applications. Cardiovasc Intervent Radiol 35:986–998

    Article  PubMed Central  PubMed  Google Scholar 

  19. Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC (1998) Automated image registration: I. General methods and intrasubject, intramodality validation. J Comput Assist Tomogr 22:139–152

    Article  CAS  PubMed  Google Scholar 

  20. Moul JW (2000) Prostate specific antigen only progression of prostate cancer. J Urol 163:1632–1642

    Article  CAS  PubMed  Google Scholar 

  21. King CR, Kapp DS (2008) Radiotherapy after prostatectomy: is the evidence for dose escalation out there? Int J Radiat Oncol Biol Phys 71:346–350. doi:10.1016/j.ijrobp.2007.10.008

    Article  PubMed  Google Scholar 

  22. Rouvière O (2012) Imaging techniques for local recurrence of prostate cancer: for whom, why and how? Diagn Interv Imaging 93:279–290. doi:10.1016/j.diii.2012.01.012

    Article  PubMed  Google Scholar 

  23. Cirillo S, Petracchini M, Scotti L, et al. (2009) Endorectal magnetic resonance imaging at 1.5 Tesla to assess local recurrence following radical prostatectomy using T2-weighted and contrast-enhanced imaging. Eur Radiol 19:761–769. doi:10.1007/s00330-008-1174-8

    Article  PubMed  Google Scholar 

  24. Sciarra A, Panebianco V, Salciccia S, et al. (2008) Role of dynamic contrast-enhanced magnetic resonance (MR) imaging and proton MR spectroscopic imaging in the detection of local recurrence after radical prostatectomy for prostate cancer. Eur Urol 54:589–600. doi:10.1016/j.eururo.2007.12.034

    Article  PubMed  Google Scholar 

  25. Casciani E, Polettini E, Carmenini E, et al. (2008) Endorectal and dynamic contrast-enhanced MRI for detection of local recurrence after radical prostatectomy. AJR Am J Roentgenol 190:1187–1192. doi:10.2214/AJR.07.3032

    Article  PubMed  Google Scholar 

  26. Vees H, Buchegger F, Albrecht S, et al. (2007) 18F-choline and/or 11C-acetate positron emission tomography: detection of residual or progressive subclinical disease at very low prostate-specific antigen values (<1 ng/mL) after radical prostatectomy. BJU Int 99:1415–1420

    Article  CAS  PubMed  Google Scholar 

  27. Giovacchini G, Picchio M, Scattoni V, et al. (2010) PSA doubling time for prediction of [(11)C]choline PET/CT findings in prostate cancer patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging 37:1106–1116. doi:10.1007/s00259-010-1403-7

    Article  CAS  PubMed  Google Scholar 

  28. Rinnab L, Simon J, Hautmann RE, et al. (2009) [(11)C]choline PET/CT in prostate cancer patients with biochemical recurrence after radical prostatectomy. World J Urol 27:619–625. doi:10.1007/s00345-009-0371-7

    Article  CAS  PubMed  Google Scholar 

  29. Picchio M, Briganti A, Fanti S, et al. (2011) The role of choline positron emission tomography/computed tomography in the management of patients with prostate-specific antigen progression after radical treatment of prostate cancer. Eur Urol 59:51–60. doi:10.1016/j.eururo.2010.09.004

    Article  PubMed  Google Scholar 

  30. Breeuwsma AJ, Pruim J, van den Bergh AC, et al. (2010) Detection of local, regional, and distant recurrence in patients with PSA relapse after external-beam radiotherapy using (11)C-choline positron emission tomography. Int J Radiat Oncol Biol Phys 77:160–164. doi:10.1016/j.ijrobp.2009.04.090

    Article  PubMed  Google Scholar 

  31. Allen SD, Thompson A, Sohaib SA (2008) The normal post-surgical anatomy of the male pelvis following radical prostatectomy as assessed by magnetic resonance imaging. Eur Radiol 18:1281–1291. doi:10.1007/s00330-008-0867-3

    Article  PubMed  Google Scholar 

  32. Wasserman NF, Kapoor DA, Hildebrandt WC, et al. (1992) Transrectal US in evaluation of patients after radical prostatectomy. Part I. Normal postoperative anatomy. Radiology 185:361–366

    Article  CAS  PubMed  Google Scholar 

  33. Sella T, Schwartz LH, Swindle PW, et al. (2004) Suspected local recurrence after radical prostatectomy: endorectal coil MR imaging. Radiology 231:379–385

    Article  PubMed  Google Scholar 

  34. Panebianco V, Barchetti F, Sciarra A, et al. (2013) Prostate cancer recurrence after radical prostatectomy: the role of 3-T diffusion imaging in multi-parametric magnetic resonance imaging. Eur Radiol 23:1745–1752. doi:10.1007/s00330-013-2768-3

    Article  PubMed  Google Scholar 

  35. Sella T, Schwartz LH, Hricak H (2006) Retained seminal vesicles after radical prostatectomy: frequency, MRI characteristics, and clinical relevance. AJR Am J Roentgenol 186:539–546

    Article  PubMed  Google Scholar 

  36. Roach M III, Hanks G, Thames H Jr, et al. (2006) Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys 65:965–974

    Article  PubMed  Google Scholar 

  37. Wu LM, Xu JR, Gu HY, et al. (2013) Role of magnetic resonance imaging in the detection of local prostate cancer recurrence after external beam radiotherapy and radical prostatectomy. Clin Oncol (R Coll Radiol) 25:252–264. doi:10.1016/j.clon.2012.11.010

    Article  CAS  Google Scholar 

  38. Pucar D, Shukla-Dave A, Hricak H, et al. (2005) Prostate cancer: correlation of MR imaging and MR spectroscopy with pathologic findings after radiation therapy-initial experience. Radiology 236:545–553

    Article  PubMed Central  PubMed  Google Scholar 

  39. Coakley FV, Teh HS, Qayyum A, et al. (2004) Endorectal MR imaging and MR spectroscopic imaging for locally recurrent prostate cancer after external beam radiation therapy: preliminary experience. Radiology 233:441–448

    Article  PubMed  Google Scholar 

  40. Kim CK, Park BK, Park W, Kim SS (2010) Prostate MR imaging at 3T using a phased-arrayed coil in predicting locally recurrent prostate cancer after radiation therapy: preliminary experience. Abdom Imaging 35:246–252. doi:10.1007/s00261-008-9495-2

    Article  PubMed  Google Scholar 

  41. Vargas HA, Wassberg C, Akin O, Hricak H (2012) MR imaging of treated prostate cancer. Radiology 262:26–42. doi:10.1148/radiol.11101996

    Article  PubMed  Google Scholar 

  42. Rouvière O, Valette O, Grivolat S, et al. (2004) Recurrent prostate cancer after external beam radiotherapy: value of contrast-enhanced dynamic MRI in localizing intraprostatic tumor—correlation with biopsy findings. Urology 63:922–927

    Article  PubMed  Google Scholar 

  43. Haider MA, Chung P, Sweet J, et al. (2008) Dynamic contrast-enhanced magnetic resonance imaging for localization of recurrent prostate cancer after external beam radiotherapy. Int J Radiat Oncol Biol Phys 70:425–430

    Article  PubMed  Google Scholar 

  44. Hara T, Inoue Y, Satoh T, et al. (2012) Diffusion-weighted imaging of local recurrent prostate cancer after radiation therapy: comparison with 22-core three-dimensional prostate mapping biopsy. Magn Reson Imaging 30:1091–1098. doi:10.1016/j.mri.2012.04.022

    Article  PubMed  Google Scholar 

  45. Kim CK, Park BK, Lee HM (2009) Prediction of locally recurrent prostate cancer after radiation therapy: incremental value of 3T diffusion-weighted MRI. J Magn Reson Imaging 29:391–397. doi:10.1002/jmri.21645

    Article  PubMed  Google Scholar 

  46. Ceci F, Castellucci P, Graziani T, et al. (2014) 11C-choline PET/CT detects the site of relapse in the majority of prostate cancer patients showing biochemical recurrence after EBRT. Eur J Nucl Med Mol Imaging 41:878–886. doi:10.1007/s00259-013-2655-9

    Article  CAS  PubMed  Google Scholar 

  47. Beer AJ, Eiber M, Souvatzoglou M, et al. (2011) Restricted water diffusibility as measured by diffusion-weighted MR imaging and choline uptake in (11)C-choline PET/CT are correlated in pelvic lymph nodes in patients with prostate cancer. Mol Imaging Biol 13:352–361. doi:10.1007/s11307-010-0337-6

    Article  PubMed  Google Scholar 

  48. Hövels AM, Heesakkers RA, Adang EM, et al. (2008) The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol 63:387–395. doi:10.1016/j.crad.2007.05.022

    Article  PubMed  Google Scholar 

  49. Beheshti M, Vali R, Waldenberger P, et al. (2009) The use of F-18 choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT. Mol Imaging Biol 11:446–454. doi:10.1007/s11307-009-0217-0

    Article  PubMed  Google Scholar 

  50. Logan JK, Rais-Bahrami S, Turkbey B, et al. (2013) Current status of magnetic resonance imaging (MRI) and ultrasonography fusion software platforms for guidance of prostate biopsies. BJU Int. doi:10.1111/bju.12593

  51. Marks L, Young S, Natarajan S (2013) MRI-ultrasound fusion for guidance of targeted prostate biopsy. Curr Opin Urol 23:43–50. doi:10.1097/MOU.0b013e32835ad3ee

    Article  PubMed Central  PubMed  Google Scholar 

  52. Mauri G, Cova L, De Beni S, et al. (2014) Real-time US-CT/MRI image fusion for guidance of thermal ablation of liver tumors undetectable with US: results in 295 cases. Cardiovasc Intervent Radiol. doi:10.1007/s00270-014-0897-y

  53. Delongchamps NB, Peyromaure M, Schull A, et al. (2013) Prebiopsy magnetic resonance imaging and prostate cancer detection: comparison of random and targeted biopsies. J Urol 189:493–499. doi:10.1016/j.juro.2012.08.195

    Article  PubMed  Google Scholar 

  54. Puech P, Rouvière O, Renard-Penna R, et al. (2013) Prostate cancer diagnosis: multiparametric MR-targeted biopsy with cognitive and transrectal US-MR fusion guidance versus systematic biopsy—prospective multicenter study. Radiology 268:461–469. doi:10.1148/radiol.13121501

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Paparo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paparo, F., Piccardo, A., Bacigalupo, L. et al. Value of bimodal 18F-choline-PET/MRI and trimodal 18F-choline-PET/MRI/TRUS for the assessment of prostate cancer recurrence after radiation therapy and radical prostatectomy. Abdom Imaging 40, 1772–1787 (2015). https://doi.org/10.1007/s00261-014-0345-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-014-0345-0

Keywords

Navigation