Skip to main content

Advertisement

Log in

Preclinical evaluation of [225Ac]Ac-DOTA-TATE for treatment of lung neuroendocrine neoplasms

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

There is significant interest in the development of targeted alpha-particle therapies (TATs) for treatment of solid tumors. The metal chelator-peptide conjugate, DOTA-TATE, loaded with the β-particle emitting radionuclide 177Lu ([177Lu]Lu-DOTA-TATE) is now standard care for neuroendocrine tumors that express the somatostatin receptor 2 (SSTR2) target. A recent clinical study demonstrated efficacy of the corresponding [225Ac]Ac-DOTA-TATE in patients that were refractory to [177Lu]Lu-DOTA-TATE. Herein, we report the radiosynthesis, toxicity, biodistribution (BD), radiation dosimetry (RD), and efficacy of [225Ac]Ac-DOTA-TATE in small animal models of lung neuroendocrine neoplasms (NENs).

Methods

[225Ac]Ac-DOTA-TATE was synthesized and characterized for radiochemical yield, purity and stability. Non-tumor–bearing BALB/c mice were tested for toxicity and BD. Efficacy was determined by single intravenous injection of [225Ac]Ac-DOTA-TATE into SCID mice–bearing human SSTR2 positive H727 and H69 lung NENs. RD was calculated using the BD data.

Results

[225Ac]Ac-DOTA-TATE was synthesized with 98% yield, 99.8% purity, and displayed 97% stability after 2 days incubation in human serum at 37 °C. All animals in the toxicity study appeared healthy 5 months post injection with no indications of toxicity, except that animals that received ≥111 kBq of [225Ac]Ac-DOTA-TATE had chronic progressive nephropathy. BD studies revealed that the primary route of elimination is by the renal route. RD calculations determined pharmacokinetics parameters and absorbed α-emission dosages from 225Ac and its daughters. For both tumor models, a significant tumor growth delay and time to experimental endpoint were observed following a single administration of [225Ac]Ac-DOTA-TATE relative to controls.

Conclusions

These results suggest significant potential for the clinical translation of [225Ac]Ac-DOTA-TATE for lung NENs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Oronsky B, Ma PC, Morgensztern D, Carter CA. Nothing But NET: A review of neuroendocrine tumors and carcinomas. Neoplasia. 2017;19(12):991–1002. https://doi.org/10.1016/j.neo.2017.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hendifar AE, Marchevsky AM, Tuli R. Neuroendocrine tumors of the lung: current challenges and advances in the diagnosis and management of well-differentiated disease. J Thorac Oncol. 2017;12(3):425–36. https://doi.org/10.1016/j.jtho.2016.11.2222.

    Article  PubMed  Google Scholar 

  3. Rekhtman N. Neuroendocrine tumors of the lung: an update. Arch Pathol Lab Med. 2010;134(11):1628–38. https://doi.org/10.1043/2009-0583-RAR.1.

    Article  PubMed  Google Scholar 

  4. Delavault P, Caplin ME, Liyange N, Blumberg J, UK, Society INTSENT. The CLARINET study: assessing the effect of lanreotide autogel on tumor progression-free survival in patients with nonfunctioning gastroenteropancreatic neuroendocrine tumors. Journal of Clinical Oncology. 2012;30(15_suppl):TPS4153–TPS. https://doi.org/10.1200/jco.2012.30.15_suppl.tps4153.

    Article  Google Scholar 

  5. Rinke A, Muller HH, Schade-Brittinger C, Klose KJ, Barth P, Wied M, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol. 2009;27(28):4656–63. https://doi.org/10.1200/JCO.2009.22.8510.

    Article  CAS  PubMed  Google Scholar 

  6. Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 trial of (177)Lu-Dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125–35. https://doi.org/10.1056/NEJMoa1607427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Strosberg J, Wolin E, Chasen B, Kulke M, Bushnell D, Caplin M, et al. Health-related quality of life in patients with progressive midgut neuroendocrine tumors treated with (177)Lu-Dotatate in the phase III NETTER-1 trial. J Clin Oncol. 2018;36(25):2578–84. https://doi.org/10.1200/JCO.2018.78.5865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yao JC, Fazio N, Singh S, Buzzoni R, Carnaghi C, Wolin E, et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet. 2016;387(10022):968–77. https://doi.org/10.1016/S0140-6736(15)00817-X.

    Article  CAS  PubMed  Google Scholar 

  9. Lamberti G, Brighi N, Maggio I, Manuzzi L, Peterle C, Ambrosini V, et al. The role of mTOR in neuroendocrine tumors: future cornerstone of a winning strategy? Int J Mol Sci. 2018;19(3). https://doi.org/10.3390/ijms19030747.

  10. Lo Russo G, Pusceddu S, Prinzi N, Imbimbo M, Proto C, Signorelli D, et al. Peptide receptor radionuclide therapy: focus on bronchial neuroendocrine tumors. Tumour Biol. 2016;37(10):12991–3003. https://doi.org/10.1007/s13277-016-5258-9.

    Article  CAS  PubMed  Google Scholar 

  11. Mittra ES. Neuroendocrine tumor therapy: (177)Lu-DOTATATE. AJR Am J Roentgenol. 2018;211(2):278–85. https://doi.org/10.2214/AJR.18.19953.

    Article  PubMed  Google Scholar 

  12. Ballal S, Yadav MP, Damle NA, Sahoo RK, Bal C. Concomitant 177Lu-DOTATATE and capecitabine therapy in patients with advanced neuroendocrine tumors: a long-term-outcome, toxicity, survival, and quality-of-life study. Clin Nucl Med. 2017;42(11):e457–e66. https://doi.org/10.1097/RLU.0000000000001816.

    Article  PubMed  Google Scholar 

  13. Bodei L, Cremonesi M, Grana CM, Fazio N, Iodice S, Baio SM, et al. Peptide receptor radionuclide therapy with (1)(7)(7)Lu-DOTATATE: the IEO phase I-II study. Eur J Nucl Med Mol Imaging. 2011;38(12):2125–35. https://doi.org/10.1007/s00259-011-1902-1.

    Article  CAS  PubMed  Google Scholar 

  14. Navalkissoor S, Grossman A. Targeted alpha particle therapy for neuroendocrine tumours: the next generation of peptide receptor radionuclide therapy. Neuroendocrinology. 2019;108(3):256–64. https://doi.org/10.1159/000494760.

    Article  CAS  PubMed  Google Scholar 

  15. Andersson H, Palm S, Lindegren S, Back T, Jacobsson L, Leser G, et al. Comparison of the therapeutic efficacy of 211At- and 131I-labelled monoclonal antibody MOv18 in nude mice with intraperitoneal growth of human ovarian cancer. Anticancer Res. 2001;21(1A):409–12.

    CAS  PubMed  Google Scholar 

  16. Miederer M, Henriksen G, Alke A, Mossbrugger I, Quintanilla-Martinez L, Senekowitsch-Schmidtke R, et al. Preclinical evaluation of the alpha-particle generator nuclide 225Ac for somatostatin receptor radiotherapy of neuroendocrine tumors. Clin Cancer Res. 2008;14(11):3555–61. https://doi.org/10.1158/1078-0432.CCR-07-4647.

    Article  CAS  PubMed  Google Scholar 

  17. Milenic D, Garmestani K, Dadachova E, Chappell L, Albert P, Hill D, et al. Radioimmunotherapy of human colon carcinoma xenografts using a 213Bi-labeled domain-deleted humanized monoclonal antibody. Cancer Biother Radiopharm. 2004;19(2):135–47. https://doi.org/10.1089/108497804323071904.

    Article  CAS  PubMed  Google Scholar 

  18. Song H, Hobbs RF, Vajravelu R, Huso DL, Esaias C, Apostolidis C, et al. Radioimmunotherapy of breast cancer metastases with alpha-particle emitter 225Ac: comparing efficacy with 213Bi and 90Y. Cancer Res. 2009;69(23):8941–8. https://doi.org/10.1158/0008-5472.CAN-09-1828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wild D, Frischknecht M, Zhang H, Morgenstern A, Bruchertseifer F, Boisclair J, et al. Alpha- versus beta-particle radiopeptide therapy in a human prostate cancer model (213Bi-DOTA-PESIN and 213Bi-AMBA versus 177Lu-DOTA-PESIN). Cancer Res. 2011;71(3):1009–18. https://doi.org/10.1158/0008-5472.CAN-10-1186.

    Article  CAS  PubMed  Google Scholar 

  20. Tafreshi NK, Doligalski ML, Tichacek CJ, Pandya DN, Budzevich MM, El-Haddad G, et al. Development of targeted alpha particle therapy for solid tumors. Molecules. 2019;24(23). https://doi.org/10.3390/molecules24234314.

  21. Nonnekens J, Chatalic KL, Molkenboer-Kuenen JD, Beerens CE, Bruchertseifer F, Morgenstern A, et al. (213)Bi-labeled prostate-specific membrane antigen-targeting agents induce DNA double-Strand breaks in prostate cancer xenografts. Cancer Biother Radiopharm. 2017;32(2):67–73. https://doi.org/10.1089/cbr.2016.2155.

    Article  CAS  PubMed  Google Scholar 

  22. Ballal S, Yadav MP, Bal C, Sahoo RK, Tripathi M. Broadening horizons with (225)Ac-DOTATATE targeted alpha therapy for gastroenteropancreatic neuroendocrine tumour patients stable or refractory to (177)Lu-DOTATATE PRRT: first clinical experience on the efficacy and safety. Eur J Nucl Med Mol Imaging. 2020;47(4):934–46. https://doi.org/10.1007/s00259-019-04567-2.

    Article  CAS  PubMed  Google Scholar 

  23. Esser JP, Krenning EP, Teunissen JJ, Kooij PP, van Gameren AL, Bakker WH, et al. Comparison of [(177)Lu-DOTA(0),Tyr(3)]octreotate and [(177)Lu-DOTA(0),Tyr(3)]octreotide: which peptide is preferable for PRRT? Eur J Nucl Med Mol Imaging. 2006;33(11):1346–51. https://doi.org/10.1007/s00259-006-0172-9.

    Article  CAS  PubMed  Google Scholar 

  24. Ma D, McDevitt MR, Finn RD, Scheinberg DA. Breakthrough of 225Ac and its radionuclide daughters from an 225Ac/213Bi generator: development of new methods, quantitative characterization, and implications for clinical use. Appl Radiat Isot. 2001;55(5):667–78. https://doi.org/10.1016/s0969-8043(01)00062-8.

    Article  CAS  PubMed  Google Scholar 

  25. Yong K, Brechbiel M. Application of (212)Pb for targeted alpha-particle therapy (TAT): pre-clinical and mechanistic understanding through to clinical translation. AIMS Med Sci. 2015;2(3):228–45. https://doi.org/10.3934/medsci.2015.3.228.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Borchardt PE, Yuan RR, Miederer M, McDevitt MR, Scheinberg DA. Targeted actinium-225 in vivo generators for therapy of ovarian cancer. Cancer Res. 2003;63(16):5084–90.

    CAS  PubMed  Google Scholar 

  27. Zhuikov BL, Kalmykov SN, Ermolaev RA, Aliev VM, Kokhanyuk VL, Matushko IG, et al. Production of 225Ac and 223Ra by irradiation of Th with accelerated protons. Radiochemistry. 2011;53(1):77–80.

    Article  Google Scholar 

  28. Griswold JR, Medvedev DG, Engle JW, Copping R, Fitzsimmons JM, Radchenko V, et al. Large scale accelerator production of (225)Ac: effective cross sections for 78-192MeV protons incident on (232)Th targets. Appl Radiat Isot. 2016;118:366–74. https://doi.org/10.1016/j.apradiso.2016.09.026.

    Article  CAS  PubMed  Google Scholar 

  29. John K, editor. Targeted Alpha Therapy: The US DOE Tri-Lab (ORNL, BNL, LANL) Research Effort to Provide Accelerator-Produced 225Ac for Radiotherapy. American Physical Society Annual Meeting; 2017 January 2017; New Orleans, LA USA.

  30. Reid Y, Storts D, Riss T, Minor L. Authentication of human cell lines by STR DNA profiling analysis. In: Sittampalam GS, Coussens NP, Brimacombe K, Grossman A, Arkin M, Auld D et al., editors. Assay Guidance Manual. Bethesda (MD)2004.

  31. Tafreshi NK, Enkemann SA, Bui MM, Lloyd MC, Abrahams D, Huynh AS, et al. A mammaglobin-a targeting agent for noninvasive detection of breast cancer metastasis in lymph nodes. Cancer Res. 2011;71(3):1050–9. https://doi.org/10.1158/0008-5472.CAN-10-3091.

    Article  CAS  PubMed  Google Scholar 

  32. Barkey NM, Tafreshi NK, Josan JS, De Silva CR, Sill KN, Hruby VJ, et al. Development of melanoma-targeted polymer micelles by conjugation of a melanocortin 1 receptor (MC1R) specific ligand. J Med Chem. 2011;54(23):8078–84. https://doi.org/10.1021/jm201226w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pandya DN, Hantgan R, Budzevich MM, Kock ND, Morse DL, Batista I, et al. Preliminary therapy evaluation of (225)Ac-DOTA-c(RGDyK) demonstrates that Cerenkov radiation derived from (225)Ac daughter decay can be detected by optical imaging for in vivo tumor visualization. Theranostics. 2016;6(5):698–709. https://doi.org/10.7150/thno.14338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tafreshi NK, Tichacek CJ, Pandya DN, Doligalski ML, Budzevich MM, Kil H, et al. Melanocortin 1 receptor-targeted alpha-particle therapy for metastatic uveal melanoma. J Nucl Med. 2019;60(8):1124–33. https://doi.org/10.2967/jnumed.118.217240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morse DL, Carroll D, Weberg L, Borgstrom MC, Ranger-Moore J, Gillies RJ. Determining suitable internal standards for mRNA quantification of increasing cancer progression in human breast cells by real-time reverse transcriptase polymerase chain reaction. Anal Biochem. 2005;342(1):69–77. https://doi.org/10.1016/j.ab.2005.03.034.

    Article  CAS  PubMed  Google Scholar 

  36. Morss LR, Edelstein N, Fuger J, Katz JJ. The chemistry of the actinide and transactinide elements, Volumes 1–6. In: Morss LR, Edelstein, N., Fuger, J., Katz, J.J., editor. 4th ed: Springer Science and Business Media; 2011.

  37. Tichacek CJ, Budzevich MM, Wadas TJ, Morse DL, Moros EG. A Monte Carlo method for determining the response relationship between two commonly used detectors to indirectly measure alpha particle radiation activity. Molecules. 2019;24(18). doi:https://doi.org/10.3390/molecules24183397.

  38. Lambert B, Cybulla M, Weiner SM, Van De Wiele C, Ham H, Dierckx RA, et al. Renal toxicity after radionuclide therapy. Radiat Res. 2004;161(5):607–11. https://doi.org/10.1667/rr3105.

    Article  CAS  PubMed  Google Scholar 

  39. Vegt E, de Jong M, Wetzels JF, Masereeuw R, Melis M, Oyen WJ, et al. Renal toxicity of radiolabeled peptides and antibody fragments: mechanisms, impact on radionuclide therapy, and strategies for prevention. J Nucl Med. 2010;51(7):1049–58. https://doi.org/10.2967/jnumed.110.075101.

    Article  CAS  PubMed  Google Scholar 

  40. Rolleman EJ, Valkema R, de Jong M, Kooij PP, Krenning EP. Safe and effective inhibition of renal uptake of radiolabelled octreotide by a combination of lysine and arginine. Eur J Nucl Med Mol Imaging. 2003;30(1):9–15. https://doi.org/10.1007/s00259-002-0982-3.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Animal studies were conducted in the Moffitt Vivarium administered by the University of South Florida. The Analytic Microscopy, Bioinformatics and Biostatistics, Small Animal Imaging Laboratory and Tissue Core Facilities at the H. Lee Moffitt Cancer Center & Research Institute provided support. Actinium-225 was supplied by the United States Department of Energy Office of Science Isotope Program in the Office of Nuclear Physics.

Funding

Funding was provided by the Neuroendocrine Tumor Research Foundation (Morse, El-Haddad), the Moffitt Radiology Pilot Award (El-Haddad, Morse), and the Moffitt NET Research Fund (El Haddad, Strosberg). The Analytic Microscopy, Bioinformatics and Biostatistics, Small Animal Imaging Laboratory and Tissue Core Facilities at the H. Lee Moffitt Cancer Center & Research Institute an NCI designated Comprehensive Cancer Center (P30-CA076292) provided support.

Author information

Authors and Affiliations

Authors

Contributions

Drs. Morse and El-Haddad are the corresponding authors and principal investigators that initiated and led the coordination, planning, and execution of the multi-institutional and multi-disciplinary studies reported herein. Dr. Wadas planned, led, and conducted the radiochemistry at University of Iowa. Dr. Tafreshi contributed to the planning and coordination of the biological studies conducted at Moffitt. Dr. Tafreshi also prepared the first draft of the manuscript. Dr. Pandya performed the radiochemistry at University of Iowa. Drs. Tichacek and Budzevich participated in activity measurements, biodistribution data analyses, and radiation dosimetry calculations. Jordan Reff contributed to the animal studies at Moffitt. Dr. Engelman performed the pathology analyses for the toxicity studies at Moffitt. Drs. Ji and Wang performed the lanthanum and europium chelations. David Boulware performed statistical analyses. Drs. Chiappori and Dr. Strosberg advised regarding the clinical perspective and clinical aspects of this work.

Corresponding authors

Correspondence to Ghassan El-Haddad or David L. Morse.

Ethics declarations

Conflict of interest

Drs. Morse and Wadas are co-inventors on a provisional patent application. No other potential conflicts of interest relevant to this article exist.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Translational research.

Supplementary Information

ESM 1

(PDF 1145 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tafreshi, N.K., Pandya, D.N., Tichacek, C.J. et al. Preclinical evaluation of [225Ac]Ac-DOTA-TATE for treatment of lung neuroendocrine neoplasms. Eur J Nucl Med Mol Imaging 48, 3408–3421 (2021). https://doi.org/10.1007/s00259-021-05315-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-021-05315-1

Keywords

Navigation