Skip to main content
Log in

An international expert opinion statement on the utility of PET/MR for imaging of skeletal metastases

  • Guidelines
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Background

MR is an important imaging modality for evaluating musculoskeletal malignancies owing to its high soft tissue contrast and its ability to acquire multiparametric information. PET provides quantitative molecular and physiologic information and is a critical tool in the diagnosis and staging of several malignancies. PET/MR, which can take advantage of its constituent modalities, is uniquely suited for evaluating skeletal metastases. We reviewed the current evidence of PET/MR in assessing for skeletal metastases and provided recommendations for its use.

Methods

We searched for the peer reviewed literature related to the usage of PET/MR in the settings of osseous metastases. In addition, expert opinions, practices, and protocols of major research institutions performing research on PET/MR of skeletal metastases were considered.

Results

Peer-reviewed published literature was included. Nuclear medicine and radiology experts, including those from 13 major PET/MR centers, shared the gained expertise on PET/MR use for evaluating skeletal metastases and contributed to a consensus expert opinion statement. [18F]-FDG and non [18F]-FDG PET/MR may provide key advantages over PET/CT in the evaluation for osseous metastases in several primary malignancies.

Conclusion

PET/MR should be considered for staging of malignancies where there is a high likelihood of osseous metastatic disease based on the characteristics of the primary malignancy, hight clinical suspicious and in case, where the presence of osseous metastases will have an impact on patient management. Appropriate choice of tumor-specific radiopharmaceuticals, as well as stringent adherence to PET and MR protocols, should be employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vandenberghe S, Marsden PK. PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys Med Biol. 2015;60:R115–54.

    Article  PubMed  Google Scholar 

  2. Wagenknecht G, Kaiser H-J, Mottaghy FM, Herzog H. MRI for attenuation correction in PET: methods and challenges. MAGMA. 2013;26:99–113.

    Article  PubMed  Google Scholar 

  3. Catana C, Quick HH, Zaidi H. Current commercial techniques for MRI-guided attenuation correction are insufficient and will limit the wider acceptance of PET/MRI technology in the clinic. Med Phys. 2018;

  4. Burger C, Goerres G, Schoenes S, Buck A, Lonn AHR, Von Schulthess GK. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging. 2002;29:922–7.

    Article  CAS  PubMed  Google Scholar 

  5. Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med Phys. 1998;25:2046–53.

    Article  CAS  PubMed  Google Scholar 

  6. Andersen FL, Ladefoged CN, Beyer T, Keller SH, Hansen AE, Højgaard L, et al. Combined PET/MR imaging in neurology: MR-based attenuation correction implies a strong spatial bias when ignoring bone. NeuroImage. 2014;84:206–16.

    Article  PubMed  Google Scholar 

  7. Izquierdo-Garcia D, Catana C. Magnetic resonance imaging-guided attenuation correction of positron emission tomography data in PET/MRI. PET Clin. 2016;11:129–49.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hofmann M, Steinke F, Scheel V, Charpiat G, Farquhar J, Aschoff P, et al. MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med. 2008;49:1875–83.

    Article  PubMed  Google Scholar 

  9. Eiber M, Martinez-Möller A, Souvatzoglou M, Holzapfel K, Pickhard A, Löffelbein D, et al. Value of a Dixon-based MR/PET attenuation correction sequence for the localization and evaluation of PET-positive lesions. Eur J Nucl Med Mol Imaging. 2011;38:1691–701.

    Article  PubMed  Google Scholar 

  10. Martinez-Möller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd’hotel C, Ziegler SI, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med. 2009;50:520–6.

    Article  PubMed  Google Scholar 

  11. Schulz V, Torres-Espallardo I, Renisch S, Hu Z, Ojha N, Börnert P, et al. Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging. 2011;38:138–52.

    Article  CAS  PubMed  Google Scholar 

  12. Catana C, van der Kouwe A, Benner T, Michel CJ, Hamm M, Fenchel M, et al. Towards implementing an MR-based PET attenuation correction method for neurological studies on the MR-PET brain prototype. J Nucl Med. 2010;51:1431–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Samarin A, Burger C, Wollenweber SD, Crook DW, Burger IA, Schmid DT, et al. PET/MR imaging of bone lesions--implications for PET quantification from imperfect attenuation correction. Eur J Nucl Med Mol Imaging. 2012;39:1154–60.

    Article  PubMed  Google Scholar 

  14. Eiber M, Takei T, Souvatzoglou M, Mayerhoefer ME, Fürst S, Gaertner FC, et al. Performance of whole-body integrated [18F]-FDG PET/MR in comparison to PET/CT for evaluation of malignant bone lesions. J Nucl Med. 2014;55:191–7.

    Article  PubMed  Google Scholar 

  15. Mehranian A, Zaidi H. Impact of time-of-flight PET on quantification errors in MR imaging-based attenuation correction. J Nucl Med. 2015;56:635–41.

    Article  PubMed  Google Scholar 

  16. Paulus DH, Quick HH, Geppert C, Fenchel M, Zhan Y, Hermosillo G, et al. Whole-body PET/MR imaging: quantitative evaluation of a novel model-based MR attenuation correction method including bone. J Nucl Med. 2015;56:1061–6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Oehmigen M, Lindemann ME, Gratz M, Kirchner J, Ruhlmann V, Umutlu L, et al. Impact of improved attenuation correction featuring a bone atlas and truncation correction on PET quantification in whole-body PET/MR. Eur J Nucl Med Mol Imaging. 2018;45:642–53.

    Article  CAS  PubMed  Google Scholar 

  18. Elschot M, Selnæs KM, Johansen H, Krüger-Stokke B, Bertilsson H, Bathen TF. The effect of including bone in Dixon-based attenuation correction for 18F-Fluciclovine PET/MRI of prostate Cancer. J Nucl Med. 2018;59:1913–7.

    Article  CAS  PubMed  Google Scholar 

  19. Domachevsky L, Goldberg N, Gorenberg M, Bernstine H, Groshar D, Catalano OA. Prostate cancer evaluation using PET quantification in 68Ga-PSMA-11 PET/MR with attenuation correction of bones as a fifth compartment. Quant Imaging Med Surg. 2020;10:40–7.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Berker Y, Franke J, Salomon A, Palmowski M, Donker HCW, Temur Y, et al. MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence. J Nucl Med. 2012;53:796–804.

    Article  PubMed  Google Scholar 

  21. Sekine T, Ter Voert EEGW, Warnock G, Buck A, Huellner M, Veit-Haibach P, et al. Clinical evaluation of zero-echo-time attenuation correction for brain [18F]-FDG PET/MRI: comparison with atlas attenuation correction. J Nucl Med. 2016;57:1927–32.

    Article  CAS  PubMed  Google Scholar 

  22. Poynton CB, Chen KT, Chonde DB, Izquierdo-Garcia D, Gollub RL, Gerstner ER, et al. Probabilistic atlas-based segmentation of combined T1-weighted and DUTE MRI for calculation of head attenuation maps in integrated PET/MRI scanners. Am J Nucl Med Mol Imaging. 2014;4:160–71.

    PubMed  PubMed Central  Google Scholar 

  23. Santos Ribeiro A, Rota Kops E, Herzog H, Almeida P. Hybrid approach for attenuation correction in PET/MR scanners. Nucl Instrum Methods Phys Re0073. 2014;734:166–70.

    Article  CAS  Google Scholar 

  24. Han X. MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys. 2017;44:1408–19.

    Article  CAS  PubMed  Google Scholar 

  25. Liu F, Jang H, Kijowski R, Bradshaw T, McMillan AB. Deep learning MR imaging-based attenuation correction for PET/MR imaging. Radiology. 2018;286:676–84.

    Article  PubMed  Google Scholar 

  26. Torrado-Carvajal A, Vera-Olmos J, Izquierdo-Garcia D, Catalano OA, Morales MA, Margolin J, et al. Dixon-VIBE deep learning (DIVIDE) pseudo-CT synthesis for pelvis PET/MR attenuation correction. J Nucl Med. 2019;60:429–35.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Muehe AM, Theruvath AJ, Lai L, Aghighi M, Quon A, Holdsworth SJ, et al. How to provide gadolinium-free PET/MR cancer staging of children and young adults in less than 1 h: the Stanford Approach. Mol Imaging Biol. 2018;20:324–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grueneisen J, Sawicki LM, Schaarschmidt BM, Suntharalingam S, von der Ropp S, Wetter A, et al. Evaluation of a fast protocol for staging lymphoma patients with integrated PET/MRI. PLoS One. 2016;11:e0157880.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Atkinson W, Catana C, Abramson JS, Arabasz G, McDermott S, Catalano O, et al. Hybrid FDG-PET/MR compared to FDG-PET/CT in adult lymphoma patients. Abdom Radiol (N Y). 2016;41:1338–48.

    Article  Google Scholar 

  30. Melsaether AN, Raad RA, Pujara AC, Ponzo FD, Pysarenko KM, Jhaveri K, et al. Comparison of whole-body (18)F FDG PET/MR imaging and whole-body (18)F FDG PET/CT in terms of lesion detection and radiation dose in patients with breast Cancer. Radiology. 2016;281:193–202.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sher AC, Seghers V, Paldino MJ, Dodge C, Krishnamurthy R, Krishnamurthy R, et al. Assessment of sequential PET/MRI in comparison with PET/CT of pediatric lymphoma: a prospective study. AJR Am J Roentgenol. 2016;206:623–31.

    Article  PubMed  Google Scholar 

  32. Queiroz MA, Delso G, Wollenweber S, Deller T, Zeimpekis K, Huellner M, et al. Dose optimization in TOF-PET/MR compared to TOF-PET/CT. PLoS One. 2015;10:e0128842.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Oehmigen M, Ziegler S, Jakoby BW, Georgi J-C, Paulus DH, Quick HH. Radiotracer dose reduction in integrated PET/MR: implications from national electrical manufacturers association phantom studies. J Nucl Med. 2014;55:1361–7.

    Article  PubMed  Google Scholar 

  34. Vandenberghe S, Moskal P, Karp JS. State of the art in total body PET. EJNMMI Phys. 2020;7:35.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bernard S, Walker E, Raghavan M. An approach to the evaluation of incidentally identified bone lesions encountered on imaging studies. AJR Am J Roentgenol. 2017;208:960–70.

    Article  PubMed  Google Scholar 

  36. Baur A, Stäbler A, Bartl R, Lamerz R, Scheidler J, Reiser M. MRI gadolinium enhancement of bone marrow: age-related changes in normals and in diffuse neoplastic infiltration. Skelet Radiol. 1997;26:414–8.

    Article  CAS  Google Scholar 

  37. Mahnken AH, Wildberger JE, Adam G, Stanzel S, Schmitz-Rode T, Günther RW, et al. Is there a need for contrast-enhanced T1-weighted MRI of the spine after inconspicuous short tau inversion recovery imaging? Eur Radiol. 2005;15:1387–92.

    Article  PubMed  Google Scholar 

  38. Stecco A, Trisoglio A, Soligo E, Berardo S, Sukhovei L, Carriero A. Whole-body MRI with diffusion-weighted imaging in bone metastases: a narrative review. Diagnostics. 2018;8(3):45 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163267/.

    Article  CAS  PubMed Central  Google Scholar 

  39. Montazel J-L, Divine M, Lepage E, Kobeiter H, Breil S, Rahmouni A. Normal spinal bone marrow in adults: dynamic gadolinium-enhanced MR imaging. Radiology. 2003;229:703–9.

    Article  PubMed  Google Scholar 

  40. Mirowitz SA, Apicella P, Reinus WR, Hammerman AM. MR imaging of bone marrow lesions: relative conspicuousness on T1-weighted, fat-suppressed T2-weighted, and STIR images. AJR Am J Roentgenol. 1994;162:215–21.

    Article  CAS  PubMed  Google Scholar 

  41. Yang H-L, Liu T, Wang X-M, Xu Y, Deng S-M. Diagnosis of bone metastases: a meta-analysis comparing 18FDG PET, CT, MRI and bone scintigraphy. Eur Radiol. 2011;21:2604–17.

    Article  PubMed  Google Scholar 

  42. Costelloe CM, Rohren EM, Madewell JE, Hamaoka T, Theriault RL, Yu T-K, et al. Imaging bone metastases in breast cancer: techniques and recommendations for diagnosis. Lancet Oncol. 2009;10:606–14.

    Article  PubMed  Google Scholar 

  43. Talbot JN, Paycha F, Balogova S. Diagnosis of bone metastasis: recent comparative studies of imaging modalities. Q J Nucl Med Mol Imaging. 2011;55:374–410.

    CAS  PubMed  Google Scholar 

  44. Buhmann Kirchhoff S, Becker C, Duerr HR, Reiser M, Baur-Melnyk A. Detection of osseous metastases of the spine: comparison of high resolution multi-detector-CT with MRI. Eur J Radiol. 2009;69:567–73.

    Article  PubMed  Google Scholar 

  45. Tehranzadeh J, Mnaymneh W, Ghavam C, Morillo G, Murphy BJ. Comparison of CT and MR imaging in musculoskeletal neoplasms. J Comput Assist Tomogr. 1989;13:466–72.

    Article  CAS  PubMed  Google Scholar 

  46. Aisen AM, Martel W, Braunstein EM, McMillin KI, Phillips WA, Kling TF. MRI and CT evaluation of primary bone and soft-tissue tumors. AJR Am J Roentgenol. 1986;146:749–56.

    Article  CAS  PubMed  Google Scholar 

  47. Lange MB, Nielsen ML, Andersen JD, Lilholt HJ, Vyberg M, Petersen LJ. Diagnostic accuracy of imaging methods for the diagnosis of skeletal malignancies: a retrospective analysis against a pathology-proven reference. Eur J Radiol. 2016;85:61–7.

    Article  PubMed  Google Scholar 

  48. Yuh WT, Zachar CK, Barloon TJ, Sato Y, Sickels WJ, Hawes DR. Vertebral compression fractures: distinction between benign and malignant causes with MR imaging. Radiology. 1989;172:215–8.

    Article  CAS  PubMed  Google Scholar 

  49. Baker LL, Goodman SB, Perkash I, Lane B, Enzmann DR. Benign versus pathologic compression fractures of vertebral bodies: assessment with conventional spin-echo, chemical-shift, and STIR MR imaging. Radiology. 1990;174:495–502.

    Article  CAS  PubMed  Google Scholar 

  50. Jung H-S, Jee W-H, McCauley TR, Ha K-Y, Choi K-H. Discrimination of metastatic from acute osteoporotic compression spinal fractures with MR imaging. Radiographics. 2003;23:179–87.

    Article  PubMed  Google Scholar 

  51. Klenk C, Gawande R, Tran VT, Leung JT, Chi K, Owen D, et al. Progressing toward a cohesive pediatric [18F]-FDG PET/MR protocol: is administration of gadolinium chelates necessary? J Nucl Med. 2016;57:70–7.

    Article  CAS  PubMed  Google Scholar 

  52. Pezeshk P, Alian A, Chhabra A. Role of chemical shift and Dixon based techniques in musculoskeletal MR imaging. Eur J Radiol. 2017;94:93–100.

    Article  PubMed  Google Scholar 

  53. Nakanishi K, Kobayashi M, Nakaguchi K, Kyakuno M, Hashimoto N, Onishi H, et al. Whole-body MRI for detecting metastatic bone tumor: diagnostic value of diffusion-weighted images. Magn Reson Med Sci. 2007;6:147–55.

    Article  PubMed  Google Scholar 

  54. Pozzi G, Garcia Parra C, Stradiotti P, Tien TV, Luzzati A, Zerbi A. Diffusion-weighted MR imaging in differentiation between osteoporotic and neoplastic vertebral fractures. Eur Spine J. 2012;21:123–7.

    Article  PubMed Central  Google Scholar 

  55. Weber M, Kessler L, Schaarschmidt B, Fendler WP, Lahner H, Antoch G, et al. Treatment-related changes in neuroendocrine tumors as assessed by textural features derived from 68Ga-DOTATOC PET/MRI with simultaneous acquisition of apparent diffusion coefficient. BMC Cancer. 2020;20:326.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Padhani AR, van Ree K, Collins DJ, D’Sa S, Makris A. Assessing the relation between bone marrow signal intensity and apparent diffusion coefficient in diffusion-weighted MRI. AJR Am J Roentgenol. 2013;200:163–70.

    Article  PubMed  Google Scholar 

  57. Perez-Lopez R, Mateo J, Mossop H, Blackledge MD, Collins DJ, Rata M, et al. Diffusion-weighted imaging as a treatment response biomarker for evaluating bone metastases in prostate cancer: a pilot study. Radiology. 2017;283:168–77.

    Article  PubMed  Google Scholar 

  58. Al-Nabhani KZ, Syed R, Michopoulou S, Alkalbani J, Afaq A, Panagiotidis E, et al. Qualitative and quantitative comparison of PET/CT and PET/MR imaging in clinical practice. J Nucl Med. 2014;55:88–94.

    Article  CAS  PubMed  Google Scholar 

  59. Tian J, Fu L, Yin D, Zhang J, Chen Y, An N, et al. Does the novel integrated PET/MRI offer the same diagnostic performance as PET/CT for oncological indications? PLoS One. 2014;9:e90844.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Schwenzer NF, Schraml C, Müller M, Brendle C, Sauter A, Spengler W, et al. Pulmonary lesion assessment: comparison of whole-body hybrid MR/PET and PET/CT imaging--pilot study. Radiology. 2012;264:551–8.

    Article  PubMed  Google Scholar 

  61. Wiesmüller M, Quick HH, Navalpakkam B, Lell MM, Uder M, Ritt P, et al. Comparison of lesion detection and quantitation of tracer uptake between PET from a simultaneously acquiring whole-body PET/MR hybrid scanner and PET from PET/CT. Eur J Nucl Med Mol Imaging. 2013;40:12–21.

    Article  PubMed  Google Scholar 

  62. Pace L, Nicolai E, Luongo A, Aiello M, Catalano OA, Soricelli A, et al. Comparison of whole-body PET/CT and PET/MRI in breast cancer patients: lesion detection and quantitation of 18F-deoxyglucose uptake in lesions and in normal organ tissues. Eur J Radiol. 2014;83:289–96.

    Article  PubMed  Google Scholar 

  63. Groshar D, Bernstine H, Goldberg N, Nidam M, Stein D, Abadi-Korek I, et al. Reproducibility and repeatability of same-day two sequential FDG PET/MR and PET/CT. Cancer Imaging. 2017;17:11.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Samarin A, Hüllner M, Queiroz MA, Stolzmann P, Burger IA, von Schulthess G, et al. 18F-FDG-PET/MR increases diagnostic confidence in detection of bone metastases compared with 18F-FDG-PET/CT. Nucl Med Commun. 2015;36:1165–73.

    Article  CAS  PubMed  Google Scholar 

  65. Lin C-Y, Lin C-L, Kao C-H. Staging/restaging performance of F18-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging in breast cancer: a review and meta-analysis. Eur J Radiol. 2018;107:158–65.

    Article  PubMed  Google Scholar 

  66. Catalano OA, Nicolai E, Rosen BR, Luongo A, Catalano M, Iannace C, et al. Comparison of CE-FDG-PET/CT with CE-FDG-PET/MR in the evaluation of osseous metastases in breast cancer patients. Br J Cancer. 2015;112:1452–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Botsikas D, Bagetakos I, Picarra M, Da Cunha Afonso Barisits AC, Boudabbous S, Montet X, et al. What is the diagnostic performance of 18-FDG-PET/MR compared to PET/CT for the N- and M- staging of breast cancer? Eur Radiol. 2019;29:1787–98.

    Article  PubMed  Google Scholar 

  68. Kwee TC, de Klerk JMH, Nix M, Heggelman BGF, Dubois SV, Adams HJA. Benign bone conditions that may be FDG-avid and mimic malignancy. Semin Nucl Med. 2017;47:322–51.

    Article  PubMed  Google Scholar 

  69. National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology- small cell lung cancer 2020. Available from: https://www.nccn.org/professionals/physician_gls/pdf/sclc.pdf. Accessed Mar 28, 2020.

  70. National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology- non-small cell lung cancer 2020. Available from: https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf. Accessed Mar 28, 2020.

  71. Schaarschmidt BM, Grueneisen J, Metzenmacher M, Gomez B, Gauler T, Roesel C, et al. Thoracic staging with [18F]-FDG PET/MR in non-small cell lung cancer - does it change therapeutic decisions in comparison to [18F]-FDG PET/CT? Eur Radiol. 2017;27:681–8.

    Article  PubMed  Google Scholar 

  72. Lee SM, Goo JM, Park CM, Yoon SH, Paeng JC, Cheon GJ, et al. Preoperative staging of non-small cell lung cancer: prospective comparison of PET/MR and PET/CT. Eur Radiol. 2016;26:3850–7.

    Article  PubMed  Google Scholar 

  73. Fraioli F, Screaton NJ, Janes SM, Win T, Menezes L, Kayani I, et al. Non-small-cell lung cancer resectability: diagnostic value of PET/MR. Eur J Nucl Med Mol Imaging. 2015;42:49–55.

    Article  CAS  PubMed  Google Scholar 

  74. Ohno Y, Yoshikawa T, Kishida Y, Seki S, Koyama H, Yui M, et al. Diagnostic performance of different imaging modalities in the assessment of distant metastasis and local recurrence of tumor in patients with non-small cell lung cancer. J Magn Reson Imaging. 2017;46:1707–17.

    Article  PubMed  Google Scholar 

  75. Huellner MW, de Galiza BF, Husmann L, Pietsch CM, Mader CE, Burger IA, et al. TNM staging of non-small cell lung cancer: comparison of PET/MR and PET/CT. J Nucl Med. 2016;57:21–6.

    Article  CAS  PubMed  Google Scholar 

  76. Cronin CG, Swords R, Truong MT, Viswanathan C, Rohren E, Giles FJ, et al. Clinical utility of PET/CT in lymphoma. AJR Am J Roentgenol. 2010;194:W91–103.

    Article  PubMed  Google Scholar 

  77. Gallamini A, Zwarthoed C. Interim FDG-PET imaging in lymphoma. Semin Nucl Med. 2018;48:17–27.

    Article  PubMed  Google Scholar 

  78. Afaq A, Fraioli F, Sidhu H, Wan S, Punwani S, Chen S-H, et al. Comparison of PET/MRI with PET/CT in the evaluation of disease status in lymphoma. Clin Nucl Med. 2017;42:e1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  79. National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology- Hodgkin lymphoma 2020. Available from: https://www.nccn.org/professionals/physician_gls/pdf/hodgkins.pdf. Accessed Mar 28, 2020.

  80. Heacock L, Weissbrot J, Raad R, Campbell N, Friedman KP, Ponzo F, et al. PET/MRI for the evaluation of patients with lymphoma: initial observations. AJR Am J Roentgenol. 2015;204:842–8.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Lewis J, McCarten K, Kurch L, Flerlage JE, Kaste SC, Kluge R, et al. Definition of cortical bone involvement in the staging of newly diagnosed pediatric Hodgkin lymphoma: a report from the International Working Group on Staging Evaluation and Response Criteria Harmonization (SEARCH). Pediatr Blood Cancer. 2020;67:e28142.

    Article  PubMed  Google Scholar 

  82. Theruvath AJ, Siedek F, Muehe AM, Garcia-Diaz J, Kirchner J, Martin O, et al. Therapy response assessment of pediatric tumors with whole-body diffusion-weighted MRI and FDG PET/MRI. Radiology. 2020;296:143–51.

    Article  PubMed  Google Scholar 

  83. Hawkins RA, Choi Y, Huang SC, Hoh CK, Dahlbom M, Schiepers C, et al. Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J Nucl Med. 1992;33:633–42.

    CAS  PubMed  Google Scholar 

  84. National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology- breast cancer 2020. Available from: https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf. Accessed Mar 28, 2020.

  85. Rohren EM, Macapinlac HA. Spectrum of benign bone conditions on NaF-PET. Semin Nucl Med. 2017;47:392–6.

    Article  PubMed  Google Scholar 

  86. Beheshti M. 18F-sodium fluoride PET/CT and PET/MR imaging of bone and joint disorders. PET Clin. 2018;13:477–90.

    Article  PubMed  Google Scholar 

  87. Doré-Savard L, Barrière DA, Midavaine É, Bélanger D, Beaudet N, Tremblay L, et al. Mammary cancer bone metastasis follow-up using multimodal small-animal MR and PET imaging. J Nucl Med. 2013;54:944–52.

    Article  PubMed  Google Scholar 

  88. Wallitt KL, Khan SR, Dubash S, Tam HH, Khan S, Barwick TD. Clinical PET imaging in prostate cancer. Radiographics. 2017;37:1512–36.

    Article  PubMed  Google Scholar 

  89. Schuster DM, Nanni C, Fanti S, Oka S, Okudaira H, Inoue Y, et al. Anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid: physiologic uptake patterns, incidental findings, and variants that may simulate disease. J Nucl Med. 2014;55:1986–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Oka S, Hattori R, Kurosaki F, Toyama M, Williams LA, Yu W, et al. A preliminary study of anti-1-amino-3-18F-fluorocyclobutyl-1-carboxylic acid for the detection of prostate cancer. J Nucl Med. 2007;48:46–55.

    CAS  PubMed  Google Scholar 

  91. Shoup TM, Olson J, Hoffman JM, Votaw J, Eshima D, Eshima L, et al. Synthesis and evaluation of [18F]1-amino-3-fluorocyclobutane-1-carboxylic acid to image brain tumors. J Nucl Med. 1999;40:331–8.

    CAS  PubMed  Google Scholar 

  92. Selnæs KM, Krüger-Stokke B, Elschot M, Willoch F, Størkersen Ø, Sandsmark E, et al. 18F-Fluciclovine PET/MRI for preoperative lymph node staging in high-risk prostate cancer patients. Eur Radiol. 2018;28:3151–9.

    Article  PubMed  Google Scholar 

  93. Chau A, Gardiner P, Colletti PM, Jadvar H. Diagnostic performance of 18F-Fluciclovine in detection of prostate cancer bone metastases. Clin Nucl Med. 2018;43:e226–31.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Amorim BJ, Prabhu V, Marco SS, Gervais D, Palmer WE, Heidari P, et al. Performance of 18F-fluciclovine PET/MR in the evaluation of osseous metastases from castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2020;47:105–14.

    Article  CAS  PubMed  Google Scholar 

  95. Lütje S, Blex S, Gomez B, Schaarschmidt BM, Umutlu L, Forsting M, et al. Optimization of acquisition time of 68Ga-PSMA-ligand PET/MRI in patients with local and metastatic prostate cancer. PLoS One. 2016;11:e0164392.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Afshar-Oromieh A, Sattler LP, Mier W, Hadaschik BA, Debus J, Holland-Letz T, et al. The clinical impact of additional late PET/CT imaging with 68Ga-PSMA-11 (HBED-CC) in the diagnosis of prostate cancer. J Nucl Med. 2017;58:750–5.

    Article  CAS  PubMed  Google Scholar 

  97. Derlin T, Weiberg D, von Klot C, Wester H-J, Henkenberens C, Ross TL, et al. 68Ga-PSMA I&T PET/CT for assessment of prostate cancer: evaluation of image quality after forced diuresis and delayed imaging. Eur Radiol. 2016;26:4345–53.

    Article  PubMed  Google Scholar 

  98. Domachevsky L, Bernstine H, Goldberg N, Nidam M, Stern D, Sosna J, et al. Early 68GA-PSMA PET/MRI acquisition: assessment of lesion detectability and PET metrics in patients with prostate cancer undergoing same-day late PET/CT. Clin Radiol. 2017;72:944–50.

    Article  CAS  PubMed  Google Scholar 

  99. Uprimny C, Kroiss AS, Decristoforo C, Fritz J, Warwitz B, Scarpa L, et al. Early dynamic imaging in 68Ga- PSMA-11 PET/CT allows discrimination of urinary bladder activity and prostate cancer lesions. Eur J Nucl Med Mol Imaging. 2017;44:765–75.

    Article  CAS  PubMed  Google Scholar 

  100. Giesel FL, Knorr K, Spohn F, Will L, Maurer T, Flechsig P, et al. Detection efficacy of 18F-PSMA-1007 PET/CT in 251 patients with biochemical recurrence of prostate cancer after radical prostatectomy. J Nucl Med. 2019;60:362–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zacho HD, Nielsen JB, Haberkorn U, Stenholt L, Petersen LJ. 68 Ga-PSMA PET/CT for the detection of bone metastases in prostate cancer: a systematic review of the published literature. Clin Physiol Funct Imaging. 2017.

  102. Kranzbühler B, Nagel H, Becker AS, Müller J, Huellner M, Stolzmann P, et al. Clinical performance of 68Ga-PSMA-11 PET/MRI for the detection of recurrent prostate cancer following radical prostatectomy. Eur J Nucl Med Mol Imaging. 2018;45:20–30.

    Article  PubMed  Google Scholar 

  103. Freitag MT, Radtke JP, Hadaschik BA, Kopp-Schneider A, Eder M, Kopka K, et al. Comparison of hybrid (68)Ga-PSMA PET/MRI and (68)Ga-PSMA PET/CT in the evaluation of lymph node and bone metastases of prostate cancer. Eur J Nucl Med Mol Imaging. 2016;43:70–83.

    Article  CAS  PubMed  Google Scholar 

  104. Afshar-Oromieh A, Haberkorn U, Schlemmer HP, Fenchel M, Eder M, Eisenhut M, et al. Comparison of PET/CT and PET/MRI hybrid systems using a 68Ga-labelled PSMA ligand for the diagnosis of recurrent prostate cancer: initial experience. Eur J Nucl Med Mol Imaging. 2014;41:887–97.

    Article  CAS  PubMed  Google Scholar 

  105. De Coster L, Sciot R, Everaerts W, Gheysens O, Verscuren R, Deroose CM, et al. Fibrous dysplasia mimicking bone metastasis on 68GA-PSMA PET/MRI. Eur J Nucl Med Mol Imaging. 2017;44:1607–8.

    Article  PubMed  Google Scholar 

  106. Domachevsky L, Bernstine H, Goldberg N, Nidam M, Catalano OA, Groshar D. Comparison between pelvic PSMA-PET/MR and whole-body PSMA-PET/CT for the initial evaluation of prostate cancer: a proof of concept study. Eur Radiol. 2020;30:328–36.

    Article  PubMed  Google Scholar 

  107. Domachevsky L, Goldberg N, Bernstine H, Nidam M, Groshar D. Quantitative characterisation of clinically significant intra-prostatic cancer by prostate-specific membrane antigen (PSMA) expression and cell density on PSMA-11. Eur Radiol. 2018;28:5275–83.

    Article  PubMed  Google Scholar 

  108. Hofman MS, Lau WFE, Hicks RJ. Somatostatin receptor imaging with 68Ga DOTATATE PET/CT: clinical utility, normal patterns, pearls, and pitfalls in interpretation. Radiographics. 2015;35:500–16.

    Article  PubMed  Google Scholar 

  109. Subramaniam RM, Bradshaw ML, Lewis K, Pinho D, Shah C, Walker RC. ACR practice parameter for the performance of Gallium-68 DOTATATE PET/CT for neuroendocrine tumors. Clin Nucl Med. 2018;43:899–908.

    Article  PubMed  Google Scholar 

  110. Geijer H, Breimer LH. Somatostatin receptor PET/CT in neuroendocrine tumours: update on systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2013;40:1770–80.

    Article  CAS  PubMed  Google Scholar 

  111. Panagiotidis E, Alshammari A, Michopoulou S, Skoura E, Naik K, Maragkoudakis E, et al. Comparison of the impact of 68Ga-DOTATATE and [18F]-FDG PET/CT on clinical management in patients with neuroendocrine tumors. J Nucl Med. 2017;58:91–6.

    Article  PubMed  Google Scholar 

  112. Binderup T, Knigge U, Loft A, Federspiel B, Kjaer A. 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin Cancer Res. 2010;16:978–85.

    Article  CAS  PubMed  Google Scholar 

  113. Naji M, Zhao C, Welsh SJ, Meades R, Win Z, Ferrarese A, et al. 68Ga-DOTA-TATE PET vs. 123I-MIBG in identifying malignant neural crest tumours. Mol Imaging Biol. 2011;13:769–75.

    Article  PubMed  Google Scholar 

  114. Sharma P, Dhull VS, Arora S, Gupta P, Kumar R, Durgapal P, et al. Diagnostic accuracy of (68)Ga-DOTANOC PET/CT imaging in pheochromocytoma. Eur J Nucl Med Mol Imaging. 2014;41:494–504.

    Article  CAS  PubMed  Google Scholar 

  115. Forrer F, Riedweg I, Maecke HR, Mueller-Brand J. Radiolabeled DOTATOC in patients with advanced paraganglioma and pheochromocytoma. Q J Nucl Med Mol Imaging. 2008;52:334–40.

    CAS  PubMed  Google Scholar 

  116. Afshar-Oromieh A, Giesel FL, Linhart HG, Haberkorn U, Haufe S, Combs SE, et al. Detection of cranial meningiomas: comparison of 68Ga-DOTATOC PET/CT and contrast-enhanced MRI. Eur J Nucl Med Mol Imaging. 2012;39:1409–15.

    Article  PubMed  Google Scholar 

  117. Stade F, Dittmar J-O, Jäkel O, Kratochwil C, Haberkorn U, Debus J, et al. Influence of 68Ga-DOTATOC on sparing of normal tissue for radiation therapy of skull base meningioma: differential impact of photon and proton radiotherapy. Radiat Oncol. 2018;13:58.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Gains JE, Bomanji JB, Fersht NL, Sullivan T, D’Souza D, Sullivan KP, et al. 177Lu-DOTATATE molecular radiotherapy for childhood neuroblastoma. J Nucl Med. 2011;52:1041–7.

    Article  PubMed  Google Scholar 

  119. Mackie EJ, Trechsel U, Bruns C. Somatostatin receptors are restricted to a subpopulation of osteoblast-like cells during endochondral bone formation. Development. 1990;110:1233–9.

    Article  CAS  PubMed  Google Scholar 

  120. Brogsitter C, Hofmockel T, Kotzerke J. (68)Ga DOTATATE uptake in vertebral hemangioma. Clin Nucl Med. 2014;39:462–3.

    Article  PubMed  Google Scholar 

  121. Klinaki I, Al-Nahhas A, Soneji N, Win Z. 68Ga DOTATATE PET/CT uptake in spinal lesions and MRI correlation on a patient with neuroendocrine tumor: potential pitfalls. Clin Nucl Med. 2013;38:e449–53.

    Article  PubMed  Google Scholar 

  122. Jacene HA, Ishimori T, Engles JM, Leboulleux S, Stearns V, Wahl RL. Effects of pegfilgrastim on normal biodistribution of [18F]-FDG: preclinical and clinical studies. J Nucl Med. 2006;47:950–6.

    CAS  PubMed  Google Scholar 

  123. Parent EE, Schuster DM. Update on 18F-Fluciclovine PET for prostate Cancer imaging. J Nucl Med. 2018;59:733–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Catalano OA, Daye D, Signore A, Iannace C, Vangel M, Luongo A, et al. Staging performance of whole-body DWI, PET/CT and PET/MRI in invasive ductal carcinoma of the breast. Int J Oncol. 2017;51:281–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by Jad S Husseini and Onofrio A Catalano and all authors commented on versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Onofrio A. Catalano.

Ethics declarations

Conflict of interest

A Torrado-Carvajal declares no conflicts of interest. The work by Dr. Torrado-Carvajal was partially supported by Young Reserchers R&D Project Ref M2166 (MIMC3-PET/MR) financed by Community of Madrid and Rey Juan Carlos University. Dr. Umutlu receives speaker and consultant payments from Bayer Healthcare and Siemens Healthcare, and research funds from Siemens. Dr. Herrmann has received personal fees from Bayer, Sofie Biosciences, SIRTEX, Adacap, Curium, Endocyte, IPSEN, Siemens Healthineers, GE Healthcare, and Amgen; non-financial support from ABX; personal fees from grants; and personal fees from BTG, outside the submitted work. Dr. Queiroz received research support from GE Healthcare. Dr. Herold is a member of scientific advisory board of Siemens Healthineers. He is also a recipient of grants/research support from Siemens Healthineers, Bayer Healthcare, Bracco (through contract with his University). Dr. Laghi has received honoraria for invited lectures from Bracco, GE Healthcare, Bayer, Guerbet and Merck. Dr. Mayerhoefer has received speaker honoraria from Bristol Myers Squibb and Siemens (paid to him), and research support from Siemens Healthineers (paid to his institution). Dr. Mahmood is a cofounder/shareholder, consultant, and grant recipient of CytoSite Biopharma. Dr. Catana has ongoing relationships with Siemens Healthineers in the domain of PET/MRI hardware and software development. Dr. Daldrup-Link receives research support from the Andrew McDonough B+ Foundation and from the Sarcoma Foundation. Dr. Rosen did not receive any personal support. However, the Martinos center receives research support from Siemens Healthineers and GE Healthcare. Dr. Catalano has been a consultant for Siemens Healthineers and IBM and receives research support from Bayer. He is a recipient of an IBM fellowship. The Martinos center receives research support from Siemens Healthineers and GE Healthcare. J Husseini, B Juarez Amorim, V Prabhu, D Groshar, L. García Cañamaque, J. García Garzón, W. Palmer, P. Heidari, T. Ting-Fang Shih, J. Sosna, C. Matushita, J. Cerci, V. Muglia, M. Nogueira-Barbosa, R. Borra, T. Kwee, A. Glaudemans, L. Evangelista, M. Salvatore, A. Cuocolo, and A. Soricelli declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Oncology - Muskoskeletal

This manuscript has been endorsed by the following societies:

Austrian Society of Radiology

Brazilian College of Radiology

Brazilian Society of Nuclear Medicine

European Society of Oncologic Imaging

German PET/MR Study Group

Israeli Society of Radiology

Italian Association of Nuclear Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Husseini, J.S., Amorim, B.J., Torrado-Carvajal, A. et al. An international expert opinion statement on the utility of PET/MR for imaging of skeletal metastases. Eur J Nucl Med Mol Imaging 48, 1522–1537 (2021). https://doi.org/10.1007/s00259-021-05198-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-021-05198-2

Keywords

Navigation