Skip to main content

Advertisement

Log in

CSF p-tau/Aβ42 ratio and brain FDG-PET may reliably detect MCI “imminent” converters to AD

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To know whether mild cognitive impairment (MCI) patients will develop Alzheimer’s disease (AD) dementia in very short time or remain stable is of crucial importance, also considering new experimental drugs usually tested within very short time frames. Here we combined cerebrospinal fluid (CSF) AD biomarkers and a neurodegeneration marker such as brain FDG-PET to define an objective algorithm, suitable not only to reliably detect MCI converters to AD dementia but also to predict timing of conversion.

Methods

We included 77 consecutive MCI patients with neurological/neuropsychological assessment, brain 18F-FDG-PET and CSF analysis available at diagnosis and a neuropsychological/neurological evaluation every 6 months for a medium- to a long-term follow-up (at least 2 and up to 8 years). Binomial logistic regression models and Kaplan-Meier survival analyses were performed to determine the best biomarker (or combination of biomarkers) in detecting MCI converters to AD dementia and then, among the converters, those who converted in short time frames.

Results

Thirty-five out of 77 MCI patients (45%) converted to AD dementia, with an average conversion time since MCI diagnosis of 26.07 months. CSF p-tau/Aβ42 was the most accurate predictor of conversion from MCI to AD dementia (82.9% sensitivity; 90% specificity). CSF p-tau/Aβ42 and FDG-PET-positive MCIs converted to AD dementia significantly earlier than the CSF-positive-only MCIs (median conversion time, 17.1 vs 31.3 months).

Conclusions

CSF p-tau/Aβ42 ratio and brain FDG-PET may predict both occurrence and timing of MCI conversion to full-blown AD dementia. MCI patients with both biomarkers suggestive for AD will likely develop an AD dementia shortly, thus representing the ideal target for any new experimental drug requiring short periods to be tested for.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Prince MJ World Alzheimer Report 2015: the global impact of dementia [Internet]. 2015 [cited 2020 Jan 8]. Available from: https://www.alz.co.uk/research/world-report-2015

  2. Lancet T. Dementia burden coming into focus. Lancet. 2017;390:2606.

    Google Scholar 

  3. Rizzi L, Rosset I, Roriz-Cruz M. Global epidemiology of dementia: Alzheimer’s and vascular types. Biomed Res Int. 2014;2014:908915.

    PubMed  PubMed Central  Google Scholar 

  4. Petersen RC. Clinical practice. Mild cognitive impairment. N Engl J Med. 2011;364:2227–34.

    CAS  PubMed  Google Scholar 

  5. Knopman DS, DeKosky ST, Cummings JL, Chui H, Corey-Bloom J, Relkin N, et al. Practice parameter: diagnosis of dementia (an evidence-based review). Report of the quality standards Subcommittee of the American Academy of neurology. Neurology. 2001;56:1143–53.

    CAS  PubMed  Google Scholar 

  6. Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14:535–62.

    PubMed  PubMed Central  Google Scholar 

  7. Smailagic N, Vacante M, Hyde C, Martin S, Ukoumunne O, Sachpekidis C. 18F-FDG PET for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2015;1:CD010632.

    PubMed  Google Scholar 

  8. Ritchie C, Smailagic N, Noel-Storr AH, Ukoumunne O, Ladds EC, Martin S. CSF tau and the CSF tau/ABeta ratio for the diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2017;3:CD010803.

    PubMed  Google Scholar 

  9. Frisoni GB, Boccardi M, Barkhof F, Blennow K, Cappa S, Chiotis K, et al. Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers. Lancet Neurol. 2017;16:661–76.

    PubMed  Google Scholar 

  10. Bocchetta M, Galluzzi S, Kehoe PG, Aguera E, Bernabei R, Bullock R, et al. The use of biomarkers for the etiologic diagnosis of MCI in Europe: an EADC survey. Alzheimers Dement. 2015;11:195–206.e1.

    PubMed  Google Scholar 

  11. Clark CM, Xie S, Chittams J, Ewbank D, Peskind E, Galasko D, et al. Cerebrospinal fluid tau and beta-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch Neurol. 2003;60:1696–702.

    PubMed  Google Scholar 

  12. Zhang S, Smailagic N, Hyde C, Noel-Storr AH, Takwoingi Y, McShane R, et al. (11)C-PIB-PET for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2014:CD010386. https://doi.org/10.1002/14651858.CD010386.pub2.

  13. Iaccarino L, Sala A, Perani D. Alzheimer’s disease neuroimaging initiative. Predicting long-term clinical stability in amyloid-positive subjects by FDG-PET. Ann Clin Transl Neurol. 2019;6:1113–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–9.

    PubMed  PubMed Central  Google Scholar 

  15. Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76:1006–14.

    PubMed  PubMed Central  Google Scholar 

  16. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134:2456–77.

    PubMed  PubMed Central  Google Scholar 

  17. Sachdev P, Kalaria R, O’Brien J, Skoog I, Alladi S, Black SE, et al. Diagnostic criteria for vascular cognitive disorders: a VASCOG statement. Alzheimer Dis Assoc Disord. 2014;28:206–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor J-P, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB consortium. Neurology. 2017;89:88–100.

    PubMed  PubMed Central  Google Scholar 

  19. Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K, et al. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging. 2009;36:2103–10.

    PubMed  Google Scholar 

  20. Perani D, Della Rosa PA, Cerami C, Gallivanone F, Fallanca F, Vanoli EG, et al. Validation of an optimized SPM procedure for FDG-PET in dementia diagnosis in a clinical setting. Neuroimage Clin. 2014;6:445–54.

    PubMed  PubMed Central  Google Scholar 

  21. Morbelli S, Bauckneht M, Arnaldi D, Picco A, Pardini M, Brugnolo A, et al. 18F-FDG PET diagnostic and prognostic patterns do not overlap in Alzheimer’s disease (AD) patients at the mild cognitive impairment (MCI) stage. Eur J Nucl Med Mol Imaging. 2017;44:2073–83.

    PubMed  Google Scholar 

  22. Mazzeo S, Santangelo R, Bernasconi MP, Cecchetti G, Fiorino A, Pinto P, et al. Combining cerebrospinal fluid biomarkers and neuropsychological assessment: a simple and cost-effective algorithm to predict the progression from mild cognitive impairment to Alzheimer’s disease dementia. J Alzheimers Dis. 2016;54:1495–508.

    CAS  PubMed  Google Scholar 

  23. Rivero-Santana A, Ferreira D, Perestelo-Pérez L, Westman E, Wahlund L-O, Sarría A, et al. Cerebrospinal fluid biomarkers for the differential diagnosis between Alzheimer’s disease and frontotemporal lobar degeneration: systematic review, HSROC analysis, and confounding factors. J Alzheimers Dis. 2017;55:625–44.

    PubMed  Google Scholar 

  24. Buchhave P, Minthon L, Zetterberg H, Wallin AK, Blennow K, Hansson O. Cerebrospinal fluid levels of β-amyloid 1-42, but not of tau, are fully changed already 5 to 10 years before the onset of Alzheimer dementia. Arch Gen Psychiatry. 2012;69:98–106.

    CAS  PubMed  Google Scholar 

  25. Bruscoli M, Lovestone S. Is MCI really just early dementia? A systematic review of conversion studies. Int Psychogeriatr. 2004;16:129–40.

    PubMed  Google Scholar 

  26. Petersen RC, Lopez O, Armstrong MJ, Getchius TSD, Ganguli M, Gloss D, et al. Practice guideline update summary: mild cognitive impairment: report of the guideline development, dissemination, and implementation Subcommittee of the American Academy of Neurology. Neurology. 2018;90:126–35.

    PubMed  PubMed Central  Google Scholar 

  27. Di Carlo A, Lamassa M, Baldereschi M, Inzitari M, Scafato E, Farchi G, et al. CIND and MCI in the Italian elderly: frequency, vascular risk factors, progression to dementia. Neurology. 2007;68:1909–16.

    PubMed  Google Scholar 

  28. van Maurik IS, Zwan MD, Tijms BM, Bouwman FH, Teunissen CE, Scheltens P, et al. Interpreting biomarker results in individual patients with mild cognitive impairment in the Alzheimer’s biomarkers in daily practice (ABIDE) project. JAMA Neurol. 2017;74:1481–91.

    PubMed  PubMed Central  Google Scholar 

  29. Consensus report of the working group on: “molecular and biochemical markers of Alzheimer’s disease”. The Ronald and Nancy Reagan Research Institute of the Alzheimer’s Association and the National Institute on Aging Working Group. Neurobiol Aging. 1998;19:109–16.

  30. Ferreira D, Rivero-Santana A, Perestelo-Pérez L, Westman E, Wahlund L-O, Sarría A, et al. Improving CSF biomarkers’ performance for predicting progression from mild cognitive impairment to Alzheimer’s disease by considering different confounding factors: a meta-analysis. Front Aging Neurosci. 2014;6:287.

    PubMed  PubMed Central  Google Scholar 

  31. Parnetti L, Chiasserini D, Eusebi P, Giannandrea D, Bellomo G, De Carlo C, et al. Performance of aβ1-40, aβ1-42, total tau, and phosphorylated tau as predictors of dementia in a cohort of patients with mild cognitive impairment. J Alzheimers Dis. 2012;29:229–38.

    CAS  PubMed  Google Scholar 

  32. Santangelo R, Dell Edera A, Sala A, Cecchetti G, Masserini F, Caso F, et al. The CSF p-tau181/Aβ42 ratio offers a good accuracy “in vivo” in the differential diagnosis of Alzheimer’s dementia. Curr Alzheimer Res. 2019;16:587–95.

  33. Bateman RJ, Xiong C, Benzinger TLS, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012;367:795–804.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ringman JM, Younkin SG, Pratico D, Seltzer W, Cole GM, Geschwind DH, et al. Biochemical markers in persons with preclinical familial Alzheimer disease. Neurology. 2008;71:85–92.

    CAS  PubMed  Google Scholar 

  35. Blennow K, Zetterberg H, Minthon L, Lannfelt L, Strid S, Annas P, et al. Longitudinal stability of CSF biomarkers in Alzheimer’s disease. Neurosci Lett. 2007;419:18–22.

    CAS  PubMed  Google Scholar 

  36. Bouwman FH, van der Flier WM, Schoonenboom NSM, van Elk EJ, Kok A, Rijmen F, et al. Longitudinal changes of CSF biomarkers in memory clinic patients. Neurology. 2007;69:1006–11.

    CAS  PubMed  Google Scholar 

  37. Buchhave P, Blennow K, Zetterberg H, Stomrud E, Londos E, Andreasen N, et al. Longitudinal study of CSF biomarkers in patients with Alzheimer’s disease. PLoS One. 2009;4:e6294.

    PubMed  PubMed Central  Google Scholar 

  38. Barker WW, Luis CA, Kashuba A, Luis M, Harwood DG, Loewenstein D, et al. Relative frequencies of Alzheimer disease, Lewy body, vascular and frontotemporal dementia, and hippocampal sclerosis in the state of Florida brain Bank. Alzheimer Dis Assoc Disord. 2002;16:203–12.

    PubMed  Google Scholar 

  39. Tang W, Huang Q, Wang Y, Wang Z-Y, Yao Y-Y. Assessment of CSF Aβ42 as an aid to discriminating Alzheimer’s disease from other dementias and mild cognitive impairment: a meta-analysis of 50 studies. J Neurol Sci. 2014;345:26–36.

    CAS  PubMed  Google Scholar 

  40. Kester MI, van der Vlies AE, Blankenstein MA, Pijnenburg YL, van Elk EJ, Scheltens P, et al. CSF biomarkers predict rate of cognitive decline in Alzheimer disease. Neurology. 2009;73:1353–8.

    CAS  PubMed  Google Scholar 

  41. Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle PA, Arfanakis K, et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain. 2019;142:1503–27.

    PubMed  PubMed Central  Google Scholar 

  42. Cerami C, Dodich A, Iannaccone S, Magnani G, Santangelo R, Presotto L, et al. A biomarker study in long-lasting amnestic mild cognitive impairment. Alzheimers Res Ther. 2018;10:42.

    PubMed  PubMed Central  Google Scholar 

  43. Botha H, Mantyh WG, Murray ME, Knopman DS, Przybelski SA, Wiste HJ, et al. FDG-PET in tau-negative amnestic dementia resembles that of autopsy-proven hippocampal sclerosis. Brain. 2018;141:1201–17.

    PubMed  PubMed Central  Google Scholar 

  44. Caminiti SP, Ballarini T, Sala A, Cerami C, Presotto L, Santangelo R, et al. FDG-PET and CSF biomarker accuracy in prediction of conversion to different dementias in a large multicentre MCI cohort. Neuroimage Clin. 2018;18:167–77.

    PubMed  PubMed Central  Google Scholar 

  45. Iaccarino L, Sala A, Caminiti SP, Perani D. The emerging role of PET imaging in dementia. F1000Res. 2017;6:1830.

    PubMed  PubMed Central  Google Scholar 

  46. Iaccarino L, Chiotis K, Alongi P, Almkvist O, Wall A, Cerami C, et al. A cross-validation of FDG- and amyloid-PET biomarkers in mild cognitive impairment for the risk prediction to dementia due to Alzheimer’s disease in a clinical setting. J Alzheimers Dis. 2017;59:603–14.

    CAS  PubMed  Google Scholar 

  47. Herukka S-K, Hallikainen M, Soininen H, Pirttilä T. CSF Abeta42 and tau or phosphorylated tau and prediction of progressive mild cognitive impairment. Neurology. 2005;64:1294–7.

    CAS  PubMed  Google Scholar 

  48. Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L. Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol. 2006;5:228–34.

    CAS  PubMed  Google Scholar 

  49. Hertze J, Minthon L, Zetterberg H, Vanmechelen E, Blennow K, Hansson O. Evaluation of CSF biomarkers as predictors of Alzheimer’s disease: a clinical follow-up study of 4.7 years. J Alzheimers Dis. 2010;21:1119–28.

    CAS  PubMed  Google Scholar 

  50. La Joie R, Perrotin A, Barré L, Hommet C, Mézenge F, Ibazizene M, et al. Region-specific hierarchy between atrophy, hypometabolism, and β-amyloid (Aβ) load in Alzheimer’s disease dementia. J Neurosci. 2012;32:16265–73.

    PubMed  PubMed Central  Google Scholar 

  51. Chételat G, Desgranges B, Landeau B, Mézenge F, Poline JB, de la Sayette V, et al. Direct voxel-based comparison between grey matter hypometabolism and atrophy in Alzheimer’s disease. Brain. 2008;131:60–71.

    PubMed  Google Scholar 

  52. Perani D, Cerami C, Caminiti SP, Santangelo R, Coppi E, Ferrari L, et al. Cross-validation of biomarkers for the early differential diagnosis and prognosis of dementia in a clinical setting. Eur J Nucl Med Mol Imaging. 2016;43:499–508.

    CAS  PubMed  Google Scholar 

  53. Ma HR, Sheng LQ, Pan PL, Wang GD, Luo R, Shi HC, et al. Cerebral glucose metabolic prediction from amnestic mild cognitive impairment to Alzheimer’s dementia: a meta-analysis. Transl Neurodegener. 2018;7:9.

    PubMed  PubMed Central  Google Scholar 

  54. Sala A, Caprioglio C, Santangelo R, Vanoli EG, Iannaccone S, Magnani G, et al. Brain metabolic signatures across the Alzheimer’s disease spectrum. Eur J Nucl Med Mol Imaging. 2020;47:256–69.

    PubMed  Google Scholar 

Download references

Availability of data and material

The dataset used and analysed during the current study will be made available by the corresponding author upon request to qualified researchers (i.e. affiliated to a university or research institution/hospital).

Funding

This work was carried out within the framework of the Ivascomar project of the Italian Ministry of Research (CTN01_00177_165430), Cluster Tecnologico Nazionale Scienze della Vita “Alisei”, Italian Ministry of Research. The sponsor had no role in the study design; the collection, analysis and interpretation of data; the writing of the report; and the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Filippi.

Ethics declarations

Conflict of interest

R Santangelo has received compensation for teaching courses from Roche.

F Masserini, A Sala, SP Caminiti, G Cecchetti, F Caso, V Martinelli, P Pinto, G Passerini, D Perani and G Magnani have nothing to disclose.

F Agosta is Section Editor of NeuroImage: Clinical; has received speaker honoraria from Biogen Idec, Novartis and Philips; and receives or has received research supports from the Italian Ministry of Health, AriSLA (Fondazione Italiana di Ricerca per la SLA), and the European Research Council.

M Filippi is Editor-in-Chief of the Journal of Neurology; received compensation for consulting services and/or speaking activities from Bayer, Biogen Idec, Merck Serono, Novartis, Roche, Sanofi Genzyme, Takeda and Teva Pharmaceutical Industries; and receives research support from Biogen Idec, Merck-Serono, Novartis, Roche, Teva Pharmaceutical Industries, Italian Ministry of Health, Fondazione Italiana Sclerosi Multipla, and AriSLA (Fondazione Italiana di Ricerca per la SLA).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neurology

Appendix

Appendix

Table 4 Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santangelo, R., Masserini, F., Agosta, F. et al. CSF p-tau/Aβ42 ratio and brain FDG-PET may reliably detect MCI “imminent” converters to AD. Eur J Nucl Med Mol Imaging 47, 3152–3164 (2020). https://doi.org/10.1007/s00259-020-04853-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-020-04853-4

Keywords

Navigation