Skip to main content
Log in

Imaging CXCR4 expression in patients with suspected primary hyperaldosteronism

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

It is challenging to differentiate unilateral aldosterone-producing adenoma (APA) from bilateral idiopathic adrenal hyperplasia (IAH) and nonfunctional adrenal adenoma (NFA) in primary aldosteronism (PA). In a first primarily ex vivo study detection, CXC chemokine receptor type 4 (CXCR4) expression has been shown to be a valuable tool for the detection of APA. In this study, we aimed to clinically evaluate CXCR4 imaging with 68Ga-pentixafor PET/CT for detecting APA.

Methods

We prospectively recruited 36 patients with clinical suspicion of PA. All patients underwent 68Ga-pentixafor PET/CT. Positive lesions were defined based on higher tracer uptake in adrenal nodular(s) shown on CT than the normal adrenal. These lesions were referred for adrenalectomy subsequently. All patients received clinical follow-up. Semi-quantitative analysis using maximum standardized uptake value (SUVmax), lesion-to-liver ratio (LLR), and lesion-to-contralateral ratio (LCR) has also been performed. PET/CT results were correlated with clinical presentation and follow-up.

Results

Thirty-nine adrenal lesions in 36 patients were found; 25 APA, 4 IAH, and 10 NFA according to histopathology and clinical assessment. Sensitivity, specificity, and accuracy of 68Ga-pentixafor PET/CT in distinguishing APA by visualization were 100%, 78.6%, and 92.3% respectively. The SUVmax of APA (21.34 ± 9.41, n = 25) was significantly higher than that of non-APA lesions (6.29 ± 2.10, n = 14, P < 0.0001). An optimal threshold of SUVmax = 11.18 was determined for predicting APA with a sensitivity of 88.0%, specificity of 100%, and an accuracy of 92.3%. A cutoff value for LCR of 2.12 yielded a sensitivity of 100% and a specificity of 92.9%, whereas a cutoff value for LLR of 2.36 reached at both 100% of sensitivity and specificity. All patients with (removed) positive lesions benefited from surgery.

Conclusion

68Ga-Pentixafor PET/CT may be used to non-invasively detect APA in PA patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2016;101(5):1889–916.

    Article  CAS  PubMed  Google Scholar 

  2. Monticone S, D’Ascenzo F, Moretti C, Williams TA, Veglio F, Gaita F, et al. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2018;6(1):41–50.

    Article  CAS  PubMed  Google Scholar 

  3. Monticone S, Burrello J, Tizzani D, Bertello C, Viola A, Buffolo F, et al. Prevalence and clinical manifestations of primary aldosteronism encountered in primary care practice. J Am Coll Cardiol. 2017;69(14):1811–20.

    Article  PubMed  Google Scholar 

  4. Li LL, Gu WJ, Dou JT, Yang GQ, Lv ZH, et al. Incidental adrenal enlargement: an overview from a retrospective study in a Chinese population. Int J Endocrinol. 2015;2015:192874.

    PubMed  PubMed Central  Google Scholar 

  5. Nanba AT, Nanba K, Byrd JB, Shields JJ, Giordano TJ, Miller BS, et al. Discordance between imaging and immunohistochemistry in unilateral primary aldosteronism. Clin Endocrinol. 2017;87(6):665–72.

    Article  CAS  Google Scholar 

  6. Rossi GP. Update in adrenal venous sampling for primary aldosteronism. Curr Opin Endocrinol Diabetes Obes. 2018;25(3):160–71.

    Article  CAS  PubMed  Google Scholar 

  7. Okamura K, Okuda T, Shirai K, Abe I, Kobayashi K, Ishii T, et al. Persistent primary aldosteronism despite iatrogenic adrenal hemorrhage after adrenal vein sampling. J Clin Med Res. 2018;10(1):66–71.

    Article  PubMed  Google Scholar 

  8. Layden BT, Hahr AJ, Elaraj DM. Primary hyperaldosteronism: challenges in subtype classification. BMC Res Notes. 2012;5:602.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Powlson AS, Gurnell M, Brown MJ. Nuclear imaging in the diagnosis of primary aldosteronism. Curr Opin Endocrinol Diabetes Obes. 2015;22(3):150–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Heinze B, Fuss CT, Mulatero P, Beuschlein F, Reincke M, Mustafa M, et al. Targeting CXCR4 (CXC chemokine receptor type 4) for molecular imaging of aldosterone-producing adenoma. Hypertension. 2018;71(2):317–25.

    CAS  PubMed  Google Scholar 

  11. Walenkamp AME, Lapa C, Herrmann K, Wester HJ. CXCR4 ligands: the next big hit? J Nucl Med. 2017;58(Suppl 2):77S–82S.

    CAS  PubMed  Google Scholar 

  12. Williams TA, Lenders JWM, Mulatero P, Burrello J, Rottenkolber M, Adolf C, et al. Outcomes after adrenalectomy for unilateral primary aldosteronism: an international consensus on outcome measures and analysis of remission rates in an international cohort. Lancet Diabetes Endocrinol. 2017;5(9):689–99.

    PubMed  PubMed Central  Google Scholar 

  13. Itcho K, Oki K, Kobuke K, Yoshii Y, Ohno H, Yoneda M, et al. Aberrant G protein-receptor expression is associated with DNA methylation in aldosterone-producing adenoma. Mol Cell Endocrinol. 2018;461:100–4.

    CAS  PubMed  Google Scholar 

  14. O’Shea PM, Griffin TP, Denieffe S, Fitzgibbon MC. The aldosterone to renin ratio (ARR) in the diagnosis of primary aldosteronism (PA): promises and challenges. Int J Clin Pract. 2019;73(7):e13353.

    PubMed  Google Scholar 

  15. Käyser SC, Dekkers T, Groenewoud HJ, van der Wilt GJ, Carel Bakx J, van der Wel MC, et al. Study heterogeneity and estimation of prevalence of primary aldosteronism: a systematic review and meta-regression analysis. J Clin Endocrinol Metab. 2016;101(7):2826–35.

    PubMed  Google Scholar 

  16. Young WF, Stanson AW, Thompson GB, Grant CS, Farley DR, van Heerden JA. Role for adrenal venous sampling in primary aldosteronism. Surgery. 2004;136(6):1227–35.

    PubMed  Google Scholar 

  17. Yen RF, Wu VC, Liu KL, Cheng MF, Wu YW, Chueh SC, et al. 131I-6beta-iodomethyl-19-norcholesterol SPECT/CT for primary aldosteronism patients with inconclusive adrenal venous sampling and CT results. J Nucl Med. 2009;50(10):1631–7.

    CAS  PubMed  Google Scholar 

  18. Wang T, Satoh F, Morimoto R, Nakamura Y, Sasano H, Auchus RJ, et al. Gene expression profiles in aldosterone-producing adenomas and adjacent adrenal glands. Eur J Endocrinol. 2011;164(4):613–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Burton TJ, Mackenzie IS, Balan K, Koo B, Bird N, Soloviev DV, et al. Evaluation of the sensitivity and specificity of (11)C-metomidate positron emission tomography (PET)-CT for lateralizing aldosterone secretion by Conn’s adenomas. J Clin Endocrinol Metab. 2012;97(1):100–9.

    Article  CAS  PubMed  Google Scholar 

  20. Mendichovszky IA, Powlson AS, Manavaki R, Aigbirhio FI, Cheow H, Buscombe JR, et al. Targeted molecular imaging in adrenal disease-an emerging role for metomidate PET-CT. Diagnostics (Basel). 2016;6(4). https://doi.org/10.3390/diagnostics6040042.

  21. Kreissl MC, Schirbel A, Fassnacht M, Haenscheid H, Verburg FA, Bock S, et al. [(1)(2)(3)I]Iodometomidate imaging in adrenocortical carcinoma. J Clin Endocrinol Metab. 2013;98(7):2755–64.

    CAS  PubMed  Google Scholar 

  22. Hahner S, Kreissl MC, Fassnacht M, Haenscheid H, Bock S, Verburg FA, et al. Functional characterization of adrenal lesions using [123I]IMTO-SPECT/CT. J Clin Endocrinol Metab. 2013;98(4):1508–18.

    CAS  PubMed  Google Scholar 

  23. Nanba K, Tsuiki M, Sawai K, Mukai K, Nishimoto K, Usui T, et al. Histopathological diagnosis of primary aldosteronism using CYP11B2 immunohistochemistry. J Clin Endocrinol Metab. 2013;98(4):1567–74.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Celso E. Gomez-Sanchez (Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi), who kindly provided us antibodies against CYP11B2.

Funding

This work was sponsored in part by the National Natural Science Foundation of China (Grant No. 81571713), CAMS Innovation Fund for Medical Sciences (CIFMS). Grant No. 2016-I2M-4-003, CAMS initiative for innovative medicine (No. CAMS-2018-I2M-3-001). The National Natural Science Foundation of China (81601529), the Tianjin Natural Science Foundation (18JCQNJC11600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anli Tong or Li Huo.

Ethics declarations

Conflict of interest

SCINTOMICS owns the IP on Pentixafor. All other authors declare that they have no conflict of interest.

Ethical approval

The clinical institutional review board approved this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Endocrinology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Zhang, Y., Wen, J. et al. Imaging CXCR4 expression in patients with suspected primary hyperaldosteronism. Eur J Nucl Med Mol Imaging 47, 2656–2665 (2020). https://doi.org/10.1007/s00259-020-04722-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-020-04722-0

Keywords

Navigation