Skip to main content

Advertisement

Log in

Diffusion-weighted MRI and 18F-FDG PET correlation with immunity in early radiotherapy response in BNL hepatocellular carcinoma mouse model: timeline validation

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Imaging probes/biomarkers that are correlated with molecular or microenvironmental alterations in tumors have been used not only in diagnosing cancer but also in assessing the efficacy of cancer treatment. We evaluated the early response of hepatocellular carcinoma (HCC) to radiation treatment using T2-weighted magnetic resonance imaging (MRI), diffusion-weighted (DW) MRI, and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET).

Methods

Orthotopic HCC tumors were established in the right liver lobe of Balb/c mice. Mice were longitudinally scanned using T2-weighted/DW MRI and 18F-FDG PET 1 day before and on days 1, 3, 6, 9 and 13 after irradiation with 15 Gy to the right liver lobe to determine tumor size, apparent diffusion coefficient (ADC) value, and maximum standardized uptake value. Immunohistochemical (IHC) staining was performed to validate the tumor microenvironment.

Results

Irradiation markedly retarded tumor growth in the orthotopic HCC model and led to increaes in ADC values as early as on day 1 after irradiation. Irradiation also resulted in increases in 18F-FDG uptake on day 1 that were sustained until the end of the observation period. IHC staining revealed a decrease in the number of proliferative cells and a continuous macrophage influx into irradiated tumors, which dramatically altered the tumor microenvironment. Lastly, in vitro coculture of HCC cells and macrophages led to interaction between the cells and enhanced the cellular uptake of 18F-FDG.

Conclusion

ADC values and 18F-FDG uptake measured using DW MRI and 18F-FDG PET serve as potential biomarkers for early assessment of HCC tumor responses to radiation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ippolito D, Fior D, Trattenero C, Ponti ED, Drago S, Guerra L, et al. Combined value of apparent diffusion coefficient-standardized uptake value max in evaluation of post-treated locally advanced rectal cancer. World J Radiol. 2015;7:509–20.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhu RX, Seto WK, Lai CL, Yuen MF. Epidemiology of hepatocellular carcinoma in the Asia-Pacific region. Gut Liver. 2016;10:332–9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Reed GB Jr, Cox AJ Jr. The human liver after radiation injury. A form of veno-occlusive disease. Am J Pathol. 1966;48:597–611.

    PubMed  PubMed Central  Google Scholar 

  4. Kalogeridi MA, Zygogianni A, Kyrgias G, Kouvaris J, Chatziioannou S, Kelekis N, et al. Role of radiotherapy in the management of hepatocellular carcinoma: a systematic review. World J Hepatol. 2015;7:101–12.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–16.

    Article  CAS  PubMed  Google Scholar 

  6. Oya N, Nagata Y, Tamaki N, Takagi T, Murata R, Magata Y, et al. FDG-PET evaluation of therapeutic effects on VX2 liver tumor. J Nucl Med. 1996;37:296–302.

    CAS  PubMed  Google Scholar 

  7. Santos P, Peck KK, Arevalo-Perez J, Karimi S, Lis E, Yamada Y, et al. T1-weighted dynamic contrast-enhanced MR perfusion imaging characterizes tumor response to radiation therapy in chordoma. AJNR Am J Neuroradiol. 2017;38:2210–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Magne N, Toillon RA, Bottero V, Didelot C, Houtte PV, Gerard JP, et al. NF-kappaB modulation and ionizing radiation: mechanisms and future directions for cancer treatment. Cancer Lett. 2006;231:158–68.

    Article  CAS  PubMed  Google Scholar 

  9. Nair VS, Gevaert O, Davidzon G, Plevritis SK, West R. NF-kappaB protein expression associates with (18)F-FDG PET tumor uptake in non-small cell lung cancer: a radiogenomics validation study to understand tumor metabolism. Lung Cancer. 2014;83:189–96.

    Article  PubMed  Google Scholar 

  10. Purandare NC, Puranik AD, Shah S, Agrawal A, Rangarajan V. Post-treatment appearances, pitfalls, and patterns of failure in head and neck cancer on FDG PET/CT imaging. Indian J Nucl Med. 2014;29:151–7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sanuki N, Takeda A, Oku Y, Eriguchi T, Nishimura S, Aoki Y, et al. Threshold doses for focal liver reaction after stereotactic ablative body radiation therapy for small hepatocellular carcinoma depend on liver function: evaluation on magnetic resonance imaging with Gd-EOB-DTPA. Int J Radiat Oncol Biol Phys. 2014;88:306–11.

    Article  PubMed  Google Scholar 

  12. Liu HL, Hsu PH, Lin CY, Huang CW, Chai WY, Chu PC, et al. Focused ultrasound enhances central nervous system delivery of bevacizumab for malignant glioma treatment. Radiology. 2016;281:99–108.

    Article  PubMed  Google Scholar 

  13. Chen L, Liu M, Bao J, Xia Y, Zhang J, Zhang L, et al. The correlation between apparent diffusion coefficient and tumor cellularity in patients: a meta-analysis. PLoS One. 2013;8:e79008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shih YH, Peng CL, Chiang PF, Lin WJ, Luo TY, Shieh MJ. Therapeutic and scintigraphic applications of polymeric micelles: combination of chemotherapy and radiotherapy in hepatocellular carcinoma. Int J Nanomedicine. 2015;10:7443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen FH, Wang CC, Liu HL, Fu SY, Yu CF, Chang C, et al. Decline of tumor vascular function as assessed by dynamic contrast-enhanced magnetic resonance imaging is associated with poor responses to radiation therapy and chemotherapy. Int J Radiat Oncol Biol Phys. 2016;95:1495–503.

    Article  PubMed  Google Scholar 

  16. Galons JP, Lope-Piedrafita S, Divijak JL, Corum C, Gillies RJ, Trouard TP. Uncovering of intracellular water in cultured cells. Magn Reson Med. 2005;54:79–86.

    Article  CAS  PubMed  Google Scholar 

  17. Harkins KD, Galons JP, Secomb TW, Trouard TP. Assessment of the effects of cellular tissue properties on ADC measurements by numerical simulation of water diffusion. Magn Reson Med. 2009;62:1414–22.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Surov A, Meyer HJ, Wienke A. Correlation between apparent diffusion coefficient (ADC) and cellularity is different in several tumors: a meta-analysis. Oncotarget. 2017;8:59492–9.

    PubMed  PubMed Central  Google Scholar 

  19. Yoshikawa MI, Ohsumi S, Sugata S, Kataoka M, Takashima S, Mochizuki T, et al. Relation between cancer cellularity and apparent diffusion coefficient values using diffusion-weighted magnetic resonance imaging in breast cancer. Radiat Med. 2008;26:222–6.

    Article  PubMed  Google Scholar 

  20. Zhao YL, Guo QQ, Yang GR, Wang QD. Early changes in apparent diffusion coefficient as an indicator of response to sorafenib in hepatocellular carcinoma. J Zhejiang Univ Sci B. 2014;15:713–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gluskin JS, Chegai F, Monti S, Squillaci E, Mannelli L. Hepatocellular carcinoma and diffusion-weighted MRI: detection and evaluation of treatment response. J Cancer. 2016;7:1565–70.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Taouli B, Koh DM. Diffusion-weighted MR imaging of the liver. Radiology. 2010;254:47–66.

    Article  PubMed  Google Scholar 

  23. Zhang XY, Sun YS, Tang L, Xue WC, Zhang XP. Correlation of diffusion-weighted imaging data with apoptotic and proliferation indexes in CT26 colorectal tumor homografts in balb/c mouse. J Magn Reson Imaging. 2011;33:1171–6.

    Article  CAS  PubMed  Google Scholar 

  24. Tsai CS, Chen FH, Wang CC, Huang HL, Jung SM, Wu CJ, et al. Macrophages from irradiated tumors express higher levels of iNOS, arginase-I and COX-2, and promote tumor growth. Int J Radiat Oncol Biol Phys. 2007;68:499–507.

    Article  CAS  Google Scholar 

  25. Rades D, Stalpers LJ, Veninga T, Hoskin PJ. Spinal reirradiation after short-course RT for metastatic spinal cord compression. Int J Radiat Oncol Biol Phys. 2005;63:872–5.

    Article  PubMed  Google Scholar 

  26. Chiang CS, Fu SY, Wang SC, Yu CF, Chen FH, Lin CM, et al. Irradiation promotes an m2 macrophage phenotype in tumor hypoxia. Front Oncol. 2012;2:89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Di Maggio FM, Minafra L, Forte GI, Cammarata FP, Lio D, Messa C, et al. Portrait of inflammatory response to ionizing radiation treatment. J Inflamm (Lond). 2015;12:14.

    Article  CAS  Google Scholar 

  28. Multhoff G, Radons J. Radiation, inflammation, and immune responses in cancer. Front Oncol. 2012;2:58.

    PubMed  PubMed Central  Google Scholar 

  29. Schaue D, Jahns J, Hildebrandt G, Trott KR. Radiation treatment of acute inflammation in mice. Int J Radiat Biol. 2005;81:657–67.

    Article  CAS  Google Scholar 

  30. Kern P, Keilholz L, Forster C, Seegenschmiedt MH, Sauer R, Herrmann M. In vitro apoptosis in peripheral blood mononuclear cells induced by low-dose radiotherapy displays a discontinuous dose-dependence. Int J Radiat Biol. 1999;75:995–1003.

    Article  CAS  Google Scholar 

  31. Deorukhkar A, Krishnan S. Targeting inflammatory pathways for tumor radiosensitization. Biochem Pharmacol. 2010;80:1904–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rincon M. Interleukin-6: from an inflammatory marker to a target for inflammatory diseases. Trends Immunol. 2012;33:571–7.

    Article  CAS  PubMed  Google Scholar 

  33. Zhu A, Lee D, Shim H. Metabolic positron emission tomography imaging in cancer detection and therapy response. Semin Oncol. 2011;38:55–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Higashi K, Clavo AC, Wahl RL. In vitro assessment of 2-fluoro-2-deoxy-D-glucose, L-methionine and thymidine as agents to monitor the early response of a human adenocarcinoma cell line to radiotherapy. J Nucl Med. 1993;34:773–9.

    CAS  PubMed  Google Scholar 

  35. Hu P, Cheng D, Huang T, Banizs AB, Xiao J, Liu G, et al. Evaluation of novel (64)Cu-labeled theranostic gadolinium-based Nanoprobes in HepG2 tumor-bearing nude mice. Nanoscale Res Lett. 2017;12:523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Parashar B, Wernicke AG, Rice S, Osborne J, Singh P, Nori D, et al. Early assessment of radiation response using a novel functional imaging modality -- [18F]fluorocholine PET (FCH-PET): a pilot study. Discov Med. 2012;14:13–20.

    PubMed  PubMed Central  Google Scholar 

  37. Cho LP, Kim CK, Viswanathan AN. Pilot study assessing (18)F-fluorothymidine PET/CT in cervical and vaginal cancers before and after external beam radiation. Gynecol Oncol Rep. 2015;14:34–7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Park JA, Lee YJ, Lee JW, Yoo RJ, Shin UC, Lee KC, et al. Evaluation of [(89)Zr]-oxalate as a PET tracer in inflammation, tumor, and rheumatoid arthritis models. Mol Pharm. 2016;13:2571–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Radiation Biology Core Laboratory, Chang Gung Memorial Hospital, for their support in performing the radiation treatments and in immunohistochemistry imaging, and the Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, for their support in imaging.

Funding

This study was supported by Chang Gung Medical Foundation, Taiwan (grants CRRPG3E0014, CMRPG3B0313, and CMRPD1H0471) and the Ministry of Science and Technology (MOST 107-2314-B-182-068-MY2 to Fang-Hsin Chen, and MOST 106-2627-M-182A-002 to Tzu-Chen Yen).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tzu-Chen Yen or Fang-Hsin Chen.

Ethics declarations

Conflicts of interest

None.

Ethical approval

All procedures used in animal studies were in accordance with the ethical standards of our institution.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Fig. 1

(DOCX 605 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, YH., Yu, CF., Chiu, SC. et al. Diffusion-weighted MRI and 18F-FDG PET correlation with immunity in early radiotherapy response in BNL hepatocellular carcinoma mouse model: timeline validation. Eur J Nucl Med Mol Imaging 46, 1733–1744 (2019). https://doi.org/10.1007/s00259-019-04318-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-019-04318-3

Keywords

Navigation