Skip to main content

Advertisement

Log in

Metabolic tumor burden quantified on [18F]FDG PET/CT improves TNM staging of lung cancer patients

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The purpose of our study was to test a new staging algorithm, combining clinical TNM staging (cTNM) with whole-body metabolic active tumor volume (MATV-WB), with the goal of improving prognostic ability and stratification power.

Methods

Initial staging [18F]FDG PET/CT of 278 non-small cell lung cancer (NSCLC) patients, performed between January/2011 and April/2016, 74(26.6%) women, 204(73.4%) men; aged 34-88 years (mean ± SD:66 ± 10), was retrospectively evaluated, and MATV-WB was quantified. Each patient’s follow-up time was recorded: 0.7-83.6 months (mean ± SD:25.1 ± 20.3).

Results

MATV-WB was an independent and statistically-significant predictor of overall survival (p < 0.001). The overall survival predictive ability of MATV-WB (C index: mean ± SD = 0.7071 ± 0.0009) was not worse than cTNM (C index: mean ± SD = 0.7031 ± 0.007) (Z = −0.143, p = 0.773). Estimated mean survival times of 56.3 ± 3.0 (95%CI:50.40-62.23) and 21.7 ± 2.2 months (95%CI:17.34-25.98) (Log-Rank = 77.48, p < 0.001), one-year survival rate of 86.8% and of 52.8%, and five-year survival rate of 53.6% and no survivors, were determined, respectively, for patients with MATV-WB < 49.5 and MATV-WB ≥ 49.5. Patients with MATV-WB ≥ 49.5 had a mortality risk 2.9-5.8 times higher than those with MATV-WB < 49.5 (HR = 4.12, p < 0.001). MATV-WB cutoff points were also determined for each cTNM stage: 23.7(I), 49.5(II), 52(III), 48.8(IV) (p = 0.029, p = 0.227, p = 0.025 and p = 0.001, respectively). At stages I, III and IV there was a statistically-significant difference in the estimated mean overall survival time between groups of patients defined by the cutoff points (p = 0.007, p = 0.004 and p < 0.001, respectively). At stage II (p = 0.365), there was a clinically-significant difference of about 12 months between the groups. In all cTNM stages, patients with MATV-WB ≥ cutoff points had lower survival rates. Combined clinical TNM-PET staging (cTNM-P) was then tested: Stage I < 23.7; Stage I ≥ 23.7; Stage II < 49.5; Stage II ≥ 49.5; Stage III < 52; Stage III ≥ 52; Stage IV < 48.8; Stage IV ≥ 48.8. cTNM-P staging presented a superior overall survival predictive ability (C index = 0.730) compared with conventional cTNM staging (C index = 0.699) (Z = −4.49, p < 0.001).

Conclusion

cTNM-P staging has superior prognostic value compared with conventional cTNM staging, and allows better stratification of NSCLC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. UyBico SJ, Wu CC, Suh RD, Le NH, Brown K, Krishnam MS. Lung cancer staging essentials: the new TNM staging system and potential imaging pitfalls. Radiographics. 2010;30(5):1163–81.

    Article  PubMed  Google Scholar 

  2. Brundage MD, Davies D, Mackillop WJ. Prognostic factors in non-small cell lung cancer: a decade of progress. Chest. 2002;122(3):1037–57.

    Article  PubMed  Google Scholar 

  3. Grivaux M, Zureik M, Marsal L, Asselain B, Peureux M, Chavaillon JM, et al. Five year survival for lung cancer patients managed in general hospitals. Rev Mal Respir. 2009;26(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang H, Wroblewski K, Jiang Y, Penney BC, Appelbaum D, Simon CA, et al. A new PET/CT volumetric prognostic index for non-small cell lung cancer. Lung Cancer. 2015;89(1):43–9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Goldstraw P, Crowley J, Chansky K, Giroux DJ, Groome PA, Rami-Porta R, et al. The IASLC lung cancer staging project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours. J Thorac Oncol. 2007;2(8):706–14.

    Article  PubMed  Google Scholar 

  6. Ball DL, Fisher R, Burmeister B, Graham P, Joseph D, Penniment M, et al. Stage is not a reliable indicator of tumor volume in non-small cell lung cancer: a preliminary analysis of the trans-Tasman radiation oncology group 99-05 database. J Thorac Oncol. 2006;1(7):667–72.

    PubMed  Google Scholar 

  7. Krause BJ, Schwarzenböck S, Souvatzoglou M. FDG PET and PET/CT. Recent Results Cancer Res. 2013;187:351–69.

    Article  CAS  PubMed  Google Scholar 

  8. Castelli J, De Bari B, Depeursinge A, Simon A, Devillers A, Roman Jimenez G, et al. Overview of the predictive value of quantitative 18 FDG PET in head and neck cancer treated with chemoradiotherapy. Crit Rev Oncol Hematol. 2016;108:40–51.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang H, Wroblewski K, Appelbaum D, Pu Y. Independent prognostic value of whole-body metabolic tumor burden from FDG-PET in non-small cell lung cancer. Int J Comput Assist Radiol Surg. 2013;8(2):181–91.

    Article  PubMed  Google Scholar 

  10. Lee P, Bazan JG, Lavori PW, Weerasuriya DK, Quon A, Le QT, et al. Metabolic tumor volume is an independent prognostic factor in patients treated definitively for non-small-cell lung cancer. Clin Lung Cancer. 2012;13(1):52–8.

    Article  PubMed  Google Scholar 

  11. Liao S, Penney BC, Wroblewski K, Zhang H, Simon CA, Kampalath R, et al. Prognostic value of metabolic tumor burden on 18F-FDG PET in nonsurgical patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2012;39(1):27–38.

    Article  CAS  PubMed  Google Scholar 

  12. Liao S, Penney BC, Zhang H, Suzuki K, Pu Y. Prognostic value of the quantitative metabolic volumetric measurement on 18F-FDG PET/CT in stage IV nonsurgical small-cell lung cancer. Acad Radiol. 2012;19(1):69–77.

    Article  PubMed  Google Scholar 

  13. Zhang H, Wroblewski K, Liao S, Kampalath R, Penney BC, Zhang Y, et al. Prognostic value of metabolic tumor burden from (18)F-FDG PET in surgical patients with non-small-cell lung cancer. Acad Radiol. 2013;20(1):32–40.

    Article  PubMed  Google Scholar 

  14. Chen HH, Chiu NT, Su WC, Guo HR, Lee BF. Prognostic value of whole-body total lesion glycolysis at pretreatment FDG PET/CT in non-small cell lung cancer. Radiology. 2012;264(2):559–66.

    Article  PubMed  Google Scholar 

  15. Obara P, Pu Y. Prognostic value of metabolic tumor burden in lung cancer. Chin J Cancer Res. 2013;25(6):615–22.

    PubMed  PubMed Central  Google Scholar 

  16. Bazan JG, Duan F, Snyder BS, Horng D, Graves EE, Siegel BA, et al. Metabolic tumor volume predicts overall survival and local control in patients with stage III non-small cell lung cancer treated in ACRIN 6668/RTOG 0235. Eur J Nucl Med Mol Imaging. 2017;44(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  17. Graham MM, Badawi RD, Wahl RL. Variations in PET/CT methodology for oncologic imaging at U.S. academic medical centers: an imaging response assessment team survey. J Nucl Med. 2011;52(2):311–7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Steyerberg EW, Harrell FE, Borsboom GJ, Eijkemans MJ, Vergouwe Y, Habbema JD. Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol. 2001;54(8):774–81.

    Article  CAS  PubMed  Google Scholar 

  19. Harrell FE, Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the yield of medical tests. JAMA. 1982;247(18):2543–6.

    Article  PubMed  Google Scholar 

  20. Harrell FE, Lee KL, Califf RM, Pryor DB, Rosati RA. Regression modelling strategies for improved prognostic prediction. Stat Med. 1984;3(2):143–52.

    Article  PubMed  Google Scholar 

  21. Harrell FE, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15(4):361–87.

    Article  PubMed  Google Scholar 

  22. Liu J, Dong M, Sun X, Li W, Xing L, Yu J. Prognostic value of 18F-FDG PET/CT in surgical non-small cell lung cancer: a meta-analysis. PLoS One. 2016;11(1):e0146195.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Albain KS, Swann RS, Rusch VW, Turrisi AT, Shepherd FA, Smith C, et al. Radiotherapy plus chemotherapy with or without surgical resection for stage III non-small-cell lung cancer: a phase III randomised controlled trial. Lancet. 2009;374(9687):379–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. van Meerbeeck JP, Kramer GW, Van Schil PE, Legrand C, Smit EF, Schramel F, et al. Randomized controlled trial of resection versus radiotherapy after induction chemotherapy in stage IIIA-N2 non-small-cell lung cancer. J Natl Cancer Inst. 2007;99(6):442–50.

    Article  PubMed  Google Scholar 

  25. Winther-Larsen A, Fledelius J, Sorensen BS, Meldgaard P. Metabolic tumor burden as marker of outcome in advanced EGFR wild-type NSCLC patients treated with erlotinib. Lung Cancer. 2016;94:81–7.

    Article  PubMed  Google Scholar 

  26. Lee JW, Lee SM, Yun M, Cho A. Prognostic value of volumetric parameters on staging and posttreatment FDG PET/CT in patients with stage IV non-small cell lung cancer. Clin Nucl Med. 2016;41(5):347–53.

    Article  PubMed  Google Scholar 

  27. Pak K, Cheon GJ, Nam HY, Kim SJ, Kang KW, Chung JK, et al. Prognostic value of metabolic tumor volume and total lesion glycolysis in head and neck cancer: a systematic review and meta-analysis. J Nucl Med. 2014;55(6):884–90.

    Article  CAS  PubMed  Google Scholar 

  28. Marinelli B, Espinet-Col C, Ulaner GA, McArthur HL, Gonen M, Jochelson M, et al. Prognostic value of FDG PET/CT-based metabolic tumor volumes in metastatic triple negative breast cancer patients. Am J Nucl Med Mol Imaging. 2016;6(2):120–7.

    PubMed  PubMed Central  Google Scholar 

  29. McDonald JE, Kessler MM, Gardner MW, Buros AF, Ntambi JA, Waheed S, et al. Assessment of Total lesion glycolysis by 18F FDG PET/CT significantly improves prognostic value of GEP and ISS in myeloma. Clin Cancer Res. 2017;23(8):1981–7

  30. Meignan M, Cottereau AS, Versari A, Chartier L, Dupuis J, Boussetta S, et al. Baseline metabolic tumor volume predicts outcome in high-tumor-burden follicular lymphoma: a pooled analysis of three multicenter studies. J Clin Oncol. 2016. https://doi.org/10.1200/JCO.2016.66.9440

  31. Marcus C, Wray R, Taghipour M, Marashdeh W, Ahn SJ, Mena E, et al. JOURNAL CLUB: value of quantitative FDG PET/CT volumetric biomarkers in recurrent colorectal cancer patient survival. AJR Am J Roentgenol. 2016;207(2):257–65.

    Article  PubMed  Google Scholar 

  32. Hong JH, Jung US, Min KJ, Lee JK, Kim S, Eo JS. Prognostic value of total lesion glycolysis measured by 18F-FDG PET/CT in patients with locally advanced cervical cancer. Nucl Med Commun. 2016;37(8):843–8.

    Article  CAS  PubMed  Google Scholar 

  33. Kang CM, Lee SH, Hwang HK, Yun M, Lee WJ. Preoperative volume-based PET parameter, MTV2.5, as a potential surrogate marker for tumor biology and recurrence in resected pancreatic cancer. Medicine (Baltimore). 2016;95(9):e2595.

    Article  Google Scholar 

  34. Jakoby BW, Bercier Y, Conti M, Casey ME, Bendriem B, Townsend DW. Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys Med Biol. 2011;56(8):2375–89.

    Article  CAS  PubMed  Google Scholar 

  35. Lasnon C, Majdoub M, Lavigne B, Do P, Madelaine J, Visvikis D, et al. (18)F-FDG PET/CT heterogeneity quantification through textural features in the era of harmonisation programs: a focus on lung cancer. Eur J Nucl Med Mol Imaging. 2016;43(13):2324–35.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Adelle Pushparatnam, PhD for the English translation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Lapa.

Ethics declarations

Conflicts of interests

The authors declare that they have no conflict of interest regarding this article.

Financing source

The authors declare that they have received no funds for this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapa, P., Oliveiros, B., Marques, M. et al. Metabolic tumor burden quantified on [18F]FDG PET/CT improves TNM staging of lung cancer patients. Eur J Nucl Med Mol Imaging 44, 2169–2178 (2017). https://doi.org/10.1007/s00259-017-3789-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-017-3789-y

Keywords

Navigation